4,000
Views
0
CrossRef citations to date
0
Altmetric
Review

Separation of Amino Acids and Peptides with Supercritical Fluids Chromatography

ORCID Icon, , & ORCID Icon
Pages 58-74 | Received 26 Oct 2021, Accepted 24 Jan 2022, Published online: 02 Mar 2022

References

  • Wang, X.; Yu, H.; Xing, R.; Characterization, L. P. Preparation, and Purification of Marine Bioactive Peptides. Biomed Res. Int. 2017, 2017, 9746720. DOI: 10.1155/2017/9746720.
  • Alia, K. B.; Nadeem, H.; Rasul, I.; Azeem, F.; Hussain, S.; Siddique, M. H.; Muzammil, S.; Riaz, M.; Nasir, S. Separation and Purification of Amino Acids. Applications of Ion Exchange Materials in Biomedical Industries; Inamuddin. Ed. Springer International Publishing: Cham, 2019. 1–11. 10.1007/978-3-030-06082-4_1.
  • Dołowy, M.; Pyka, A. Application of TLC, HPLC and GC Methods to the Study of Amino Acid and Peptide Enantiomers: A Review. Biomed. Chromatogr. 2014, 28(1), 84–101. DOI: 10.1002/bmc.3016.
  • Yang, L.; Nie, H.; Zhao, F.; Song, S.; Meng, Y.; Bai, Y.; Liu, H.; Novel Online, A. Two-Dimensional Supercritical Fluid Chromatography/Reversed Phase Liquid Chromatography–Mass Spectrometry Method for Lipid Profiling. Anal. Bioanal. Chem. 2020, 412(10), 2225–2235. DOI: 10.1007/s00216-019-02242-x.
  • Sethi, N.; Anand, A.; Jain, G.; Srinivas, K.; Chandrul, K. Supercritical Fluid Chromatography-A Hybrid of GC and LC. Chronicles Young Sci. 2010, 1(2), 12.
  • Larive, C. K.; Lunte, S. M.; Zhong, M.; Perkins, M. D.; Wilson, G. S.; Gokulrangan, G.; Williams, T.; Afroz, F.; Schoneich, C.; Derrick, T. S., et al. Separation and Analysis of Peptides and Proteins. Anal. Chem. 1999, 71(12), 389R–423R. DOI: 10.1021/a1990013o.
  • da Fonseca Ferreira, L. A. R.;. Separation and Purification of Amino Acids. In Dissertation for the Degree of Doctor in Biological and Chemical Engineering. Faculty of Engineering, University of Porto: Portugal, 2008.
  • Neda, O.; Vlazan, P.; Pop, R. O.; Sfarloaga, P.; Grozescu, I.; Segneanu, A.-E. Peptide and Amino Acids Separation and Identification from Natural Products. Anal. Chem. 2012, 135–146. DOI: 10.5772/51619.
  • Molineau, J.; Hideux, M.; West, C. Chromatographic Analysis of Biomolecules with Pressurized Carbon Dioxide Mobile Phases – A Review. J. Pharm. Biomed. Anal. 2021, 193, 113736. DOI: 10.1016/j.jpba.2020.113736.
  • Cesari, M.; Rossi, G. P.; Sticchi, D.; Pessina, A. C. Is Homocysteine Important as Risk Factor for Coronary Heart Disease? Nutr. Metab. Cardiovasc. Dis. 2005, 15(2), 140–147. DOI: 10.1016/j.numecd.2004.04.002.
  • Pommié, C.; Levadoux, S.; Sabatier, R.; Lefranc, G.; Lefranc, M.-P. IMGT Standardized Criteria for Statistical Analysis of Immunoglobulin V-REGION Amino Acid Properties. J. Mol. Recognit. 2004, 17(1), 17–32. DOI: 10.1002/jmr.647.
  • Frank, H.; Nicholson, G. J.; Bayer, E. Rapid Gas Chromatographic Separation of Amino Acid Enantiomers with a Novel Chiral Stationary Phase. J. Chromatogr. Sci. 1977, 15(5), 174–176. DOI: 10.1093/chromsci/15.5.174.
  • Fox, S.; Strasdeit, H.; Haasmann, S.; Brückner, H. Gas Chromatographic Separation of Stereoisomers of Non-Protein Amino Acids on Modified γ-Cyclodextrin Stationary Phase. J. Chromatogr. A. 2015, 1411, 101–109. DOI: 10.1016/j.chroma.2015.07.082.
  • Bertrand, M.; Chabin, A.; Brack, A.; Westall, F. Separation of Amino Acid Enantiomers VIA Chiral Derivatization and Non-Chiral Gas Chromatography. J. Chromatogr. A. 2008, 1180(1–2), 131–137. DOI: 10.1016/j.chroma.2007.12.004.
  • Pätzold, R.; Schieber, A.; Brückner, H. Gas Chromatographic Quantification of Free D-Amino Acids in Higher Vertebrates. Biomed. Chromatogr. 2005, 19(6), 466–473. DOI: 10.1002/bmc.515.
  • Lee, K.-A.; Yeo, S.; Kim, K. H.; Lee, W.; Kang, J. S. Enantioseparation of N-Fluorenylmethoxycarbonyl Alpha-Amino Acids on Polysaccharide-Derived Chiral Stationary Phases by Reverse Mode Liquid Chromatography. J. Pharm. Biomed. Anal. 2008, 46(5), 914–919. DOI: 10.1016/j.jpba.2008.01.012.
  • Berkecz, R.; Ilisz, I.; Misicka, A.; Tymecka, D.; Fülöp, F.; Choi, H. J.; Hyun, M. H.; Péter, A. HPLC Enantioseparation of Beta2-Homoamino Acids Using Crown Ether-Based Chiral Stationary Phase. J. Sep. Sci. 2009, 32(7), 981–987. DOI: 10.1002/jssc.200800561.
  • Lee, T.; Lee, W.; Hyun, M. H.; Park, J. H. Enantioseparation of Alpha-Amino Acids on an 18-Crown-6-Tetracarboxylic Acid-Bonded Silica by Capillary Electrochromatography. J. Chromatogr. A. 2010, 1217(8), 1425–1428. DOI: 10.1016/j.chroma.2009.12.064.
  • Majhi, K. C.; Karfa, P.; Madhuri, R. Chromatographic Separation of Amino Acids. Applications of Ion Exchange Materials in Biomedical Industries; Inamuddin. Ed. Springer International Publishing: Cham, 2019. 71–118. 10.1007/978-3-030-06082-4_4.
  • Singh, C.; Sharma, C. S.; Kamble, P. R. Amino Acid Analysis Using Ion-Exchange Chromatography: A Review. Int. J. Pharmacognosy. 2014, 1(12), 756–762. DOI: 10.13040/IJPSR.0975-8232.IJP.1(12).756-62.
  • Sewald, N.; Jakubke, H.-D. Peptides: Chemistry and Biology; John Wiley & Sons: Bielefeld: Germany, 2015. DOI: 10.1002/9783527626038.
  • Wimalasinghe, R. M.; Breitbach, Z. S.; Lee, J. T.; Armstrong, D. W. Separation of Peptides on Superficially Porous Particle Based Macrocyclic Glycopeptide Liquid Chromatography Stationary Phases: Consideration of Fast Separations. Anal. Bioanal. Chem. 2017, 409(9), 2437–2447. DOI: 10.1007/s00216-017-0190-4.
  • Zhang, B.; Soukup, R.; Armstrong, D. W. Selective Separations of Peptides with Sequence Deletions, Single Amino Acid Polymorphisms, And/or Epimeric Centers Using Macrocyclic Glycopeptide Liquid Chromatography Stationary Phases. J. Chromatogr. A. 2004, 1053(1–2), 89–99. DOI: 10.1016/J.CHROMA.2004.06.117.
  • Underberg, W. J.; Hoitink, M. A.; Reubsaet, J. L.; Waterval, J. C. Separation and Detection Techniques for Peptides and Proteins in Stability Research and Bioanalysis. J. Chromatogr. B Biomed. Sci. Appl. 2000, 742(2), 401–409. DOI: 10.1016/S0378-4347(00)00198-5.
  • Mant, C. T.; Hodges, R. S., and Hodges, R. S. High-Performance Liquid Chromatography of Peptides and Proteins : Separation, Analysis, and Conformation; Boca Raton, Florida, USA: CRC Press, 2017. DOi: 10.1201/9780203751947.
  • Gilar, M.; Olivova, P.; Daly, A. E.; Gebler, J. C. Two-Dimensional Separation of Peptides Using RP-RP-HPLC System with Different PH in First and Second Separation Dimensions. J Separation Sci. 2005, 28(14), 1694–1703. DOI: 10.1002/jssc.200500116.
  • Klesper, E.; Corwin, A. H.; Turner, D. A. High Pressure Gas Chromatography above Critical Temperatures. J. Organic Chem. 1962, No.27, 700–701.
  • Sie, S. T.; Rijnders, G. W. A. High-Pressure Gas Chromatography and Chromatography with Supercritical Fluids. III. Fluid-Liquid Chromatography. Sep. Sci. 1967, 2(6), 729–753. DOI: 10.1080/01496396708049735.
  • Sie, S. T.; Rijnders, G. W. A. Chromatography with Supercritical Fluids. Anal. Chim. Acta. 1967, 38, 31–44. DOI: 10.1016/S0003-2670(01)80559-6.
  • Bartmann, D.; Schneider, G. Experimental Results and Physico-Chemical Aspects of Supercritical Fluid Chromatography with Carbon Dioxide as the Mobile Phase. J. Chromatogr. A. 1973, 83, 135–145. DOI: 10.1016/S0021-9673(00)97034-1.
  • Kiran, E.; Debenedetti, P. G.; Peters, C. J. Supercritical Fluids: Fundamentals and Applications; Series E. Applied Sciences; Springer Science & Business Media. Kemer:Antalya, Turkey.2012, Vol. 366.10.1007/978-94-011-3929-8.
  • Tarafder, A.; Guiochon, G. Use of Isopycnic Plots in Designing Operations of Supercritical Fluid Chromatography: II. The Isopycnic Plots and the Selection of the Operating Pressure–Temperature Zone in Supercritical Fluid Chromatography. J. Chromatogr. A. 2011, 1218(28), 4576–4585. DOI: 10.1016/j.chroma.2011.05.041.
  • Lesellier, E.; West, C. The Many Faces of Packed Column Supercritical Fluid Chromatography – A Critical Review. J. Chromatogr. A. 2015, 1382, 2–46. DOI: 10.1016/j.chroma.2014.12.083.
  • Knez, Ž.; Markočič, E.; Leitgeb, M.; Primožič, M.; Knez Hrnčič, M.; Škerget, M. Industrial Applications of Supercritical Fluids: A Review. Energy. 2014, 77, 235–243. DOI: 10.1016/j.energy.2014.07.044.
  • Subramaniam, B.; Rajewski, R. A.; Snavely, K. Pharmaceutical Processing with Supercritical Carbon Dioxide. J. Pharm. Sci. 1997, 86(8), 885–890. DOI: 10.1021/js9700661.
  • Knez, Ž.; Cör, D.; Knez Hrnčič, M. Solubility of Solids in Sub- and Supercritical Fluids: A Review 2010–2017. J. Chem. Eng. Data. 2018, 63(4), 860–884. DOI: 10.1021/acs.jced.7b00778.
  • Peach, J.; Eastoe, J. Supercritical Carbon Dioxide: A Solvent like No Other. Beilstein J. Org. Chem. 2014, 10, 1878–1895. DOI: 10.3762/bjoc.10.196.
  • Gupta, R. B., and Shim, -J.-J. Solubility in Supercritical Carbon Dioxide; Boca Raton, Florida, USA: CRC Press, 2006. DOi: 10.1201/9781420005998.
  • Lemmon, E. W.; Thermophysical Properties of Fluid Systems. NIST Chemistry Webbook, 1998.
  • Solvent Physical Properties https://people.chem.umass.edu/xray/solvent.html ( accessed Jun 24, 2021).
  • Klesper, E.; Hartmann, W. Parameters in Supercritical Fluid Chromatography of Styrene Oligomers. J. Polym. Sci. Polym. Lett. Ed. 1977, 15(12), 707–712. DOI: 10.1002/pol.1977.130151201.
  • Taylor, L. T.;. Packed Column Supercritical Fluid Chromatography of Hydrophilic Analytes via Water-Rich Modifiers. J. Chromatogr. A. 2012, 1250, 196–204. DOI: 10.1016/j.chroma.2012.02.037.
  • Ng, M. H.; Din, A. K. Applications of Packed and Capillary Supercritical Fluid Chromatography in the Separation of Tocochromanols. J Separation Sci. 2020, 43(1), 285–291. DOI: 10.1002/jssc.201900342.
  • Dispas, A.; Lebrun, P.; Sassiat, P.; Ziemons, E.; Thiébaut, D.; Vial, J.; Hubert, P. Innovative Green Supercritical Fluid Chromatography Development for the Determination of Polar Compounds. J. Chromatogr. A. 2012, 1256, 253–260. DOI: 10.1016/j.chroma.2012.07.043.
  • De Klerck, K.; Mangelings, D.; Clicq, D.; De Boever, F.; Vander Heyden, Y. Combined Use of Isopropylamine and Trifluoroacetic Acid in Methanol-Containing Mobile Phases for Chiral Supercritical Fluid Chromatography. J. Chromatogr. A. 2012, 1234, 72–79. DOI: 10.1016/j.chroma.2011.11.023.
  • De Klerck, K.; Mangelings, D.; Vander Heyden, Y. Supercritical Fluid Chromatography for the Enantioseparation of Pharmaceuticals. J. Pharm. Biomed. Anal. 2012, 69, 77–92. DOI: 10.1016/j.jpba.2012.01.021.
  • Gross, M. S.; Olivos, H. J.; Butryn, D. M.; Olson, J. R.; Aga, D. S. Analysis of Hydroxylated Polybrominated Diphenyl Ethers (Oh-bdes) by Supercritical Fluid Chromatography/Mass Spectrometry. Talanta. 2016, 161, 122–129. DOI: 10.1016/j.talanta.2016.08.013.
  • Yang, Y.; Liang, Y.; Yang, J.; Ye, F.; Zhou, T.; Gongke, L. Advances of Supercritical Fluid Chromatography in Lipid Profiling. J. Pharm. Anal. 2019, 9(1), 1–8. DOI: 10.1016/j.jpha.2018.11.003.
  • Tyśkiewicz, K.; Dębczak, A.; Gieysztor, R.; Szymczak, T.; Rój, E. Determination of Fat- and Water-Soluble Vitamins by Supercritical Fluid Chromatography: A Review. J. Sep. Sci. 2018, 41(1), 336–350. DOI: 10.1002/jssc.201700598.
  • Breitbach, A. S.; Lim, Y.; Xu, Q.-L.; Kürti, L.; Armstrong, D. W.; Breitbach, Z. S. Enantiomeric Separations of α-Aryl Ketones with Cyclofructan Chiral Stationary Phases via High Performance Liquid Chromatography and Supercritical Fluid Chromatography. J. Chromatogr. A. 2016, 1427, 45–54. DOI: 10.1016/j.chroma.2015.11.069.
  • Yang, J.; Zhu, L.; Zhao, Y.; Xu, Y.; Sun, Q.; Liu, S.; Liu, C.; Ma, B. Separation of Furostanol Saponins by Supercritical Fluid Chromatography. J. Pharm. Biomed. Anal. 2017, 145, 71–78. DOI: 10.1016/j.jpba.2017.05.023.
  • Teubel, J.; Wüst, B.; Schipke, C. G.; Peters, O.; Parr, M. K. Methods in Endogenous Steroid Profiling – A Comparison of Gas Chromatography Mass Spectrometry (GC–MS) with Supercritical Fluid Chromatography Tandem Mass Spectrometry (SFC-MS/MS). J. Chromatogr. A. 2018, 1554, 101–116. DOI: 10.1016/j.chroma.2018.04.035.
  • Zheng, J.; Pinkston, J. D.; Zoutendam, P. H.; Taylor, L. T. Feasibility of Supercritical Fluid Chromatography/Mass Spectrometry of Polypeptides with up to 40-Mers. Anal. Chem. 2006, 78(5), 1535–1545. DOI: 10.1021/ac052025s.
  • Berger, T.;. Supercritical Fluid Chromatography: Primer; Agilent Technologies: USA, 2015.
  • Patel, M. A.; Riley, F.; Ashraf-Khorassani, M.; Taylor, L. T. Supercritical Fluid Chromatographic Resolution of Water Soluble Isomeric Carboxyl/Amine Terminated Peptides Facilitated via Mobile Phase Water and Ion Pair Formation. J. Chromatogr. A. 2012, 1233, 85–90. DOI: 10.1016/j.chroma.2012.02.024.
  • Losacco, G. L.; Veuthey, J.-L.; Guillarme, D. Metamorphosis of Supercritical Fluid Chromatography: A Viable Tool for the Analysis of Polar Compounds? TrAC Trends Anal Chem. 2021, 141, 116304. DOI: 10.1016/j.trac.2021.116304.
  • Desfontaine, V.; Nováková, L.; Ponzetto, F.; Nicoli, R.; Saugy, M.; Veuthey, J.-L.; Guillarme, D. Liquid Chromatography and Supercritical Fluid Chromatography as Alternative Techniques to Gas Chromatography for the Rapid Screening of Anabolic Agents in Urine. J. Chromatogr. A. 2016, 1451, 145–155. DOI: 10.1016/j.chroma.2016.05.004.
  • Škerget, M.; Kotnik, P.; Knez, Ž. Supercritical Carbon Dioxide Sorption Processes on Various Sorbent Materials. In Proceedings of the 10th Europen meeting on supercritical fluids; International Society for the Advancement of Supercritical Fluids: Colmar, France, 2005.
  • Rajendran, A.;. Design of Preparative-Supercritical Fluid Chromatography. J. Chromatogr. A. 2012, 1250, 227–249. DOI: 10.1016/j.chroma.2012.05.037.
  • Miller, L. M.; Pinkston, J. D., and Taylor, L. T. Modern Supercritical Fluid Chromatography: Carbon Dioxide Containing Mobile Phases. In Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications; pp 1–6 ; Hoboken, NJ, USA: John Wiley & Sons, 2019.
  • Dispas, A.; Jambo, H.; André, S.; Tyteca, E.; Hubert, P. Supercritical Fluid Chromatography: A Promising Alternative to Current Bioanalytical Techniques. Bioanalysis. 2017, 10(2), 107–124. DOI: 10.4155/bio-2017-0211.
  • Korany, M. A.; Mahgoub, H.; Haggag, R. S.; Ragab, M. A. A.; Elmallah, O. A. Green Chemistry: Analytical and Chromatography. J Liquid Chromatography Related Technol. 2017, 40(16), 839–852. DOI: 10.1080/10826076.2017.1373672.
  • Grand-Guillaume Perrenoud, A.; Veuthey, J.-L.; Guillarme, D. Comparison of Ultra-High Performance Supercritical Fluid Chromatography and Ultra-High Performance Liquid Chromatography for the Analysis of Pharmaceutical Compounds. J. Chromatogr. A. 2012, 1266, 158–167. DOI: 10.1016/j.chroma.2012.10.005.
  • Hubert, P.; Marini, R. D.; Dispas, A.; Andri, B. Overview of the Analytical Lifecycle of Supercritical Fluid Chromatography Methods. Am. J. Anal. Chem. 2016, 7(1), 720–726. DOI: 10.4236/ajac.2016.71008.
  • Hicks, M. B.; Regalado, E. L.; Tan, F.; Gong, X.; Welch, C. J. Supercritical Fluid Chromatography for GMP Analysis in Support of Pharmaceutical Development and Manufacturing Activities. J Pharm Biomed Anal. 2016, 117, 316–324. DOI: 10.1016/j.jpba.2015.09.014.
  • Akbal, L.; Hopfgartner, G. Hyphenation of Packed Column Supercritical Fluid Chromatography with Mass Spectrometry: Where are We and What are the Remaining Challenges? Anal. Bioanal. Chem. 2020, 412(25), 6667–6677. DOI: 10.1007/s00216-020-02715-4.
  • Desfontaine, V.; Nováková, L.; Guillarme, D. SFC-MS versus RPLC-MS for Drug Analysis in Biological Samples. Bioanalysis. 2015, 7(10), 1193–1195. DOI: 10.4155/bio.15.41.
  • Biba, M.; Regalado, E. L.; Wu, N.; Welch, C. J. Effect of Particle Size on the Speed and Resolution of Chiral Separations Using Supercritical Fluid Chromatography. J. Chromatogr. A. 2014, 1363, 250–256. DOI: 10.1016/j.chroma.2014.07.010.
  • Regalado, E. L.; Welch, C. J. Pushing the Speed Limit in Enantioselective Supercritical Fluid Chromatography. J Separation Sci. 2015, 38(16), 2826–2832. DOI: 10.1002/jssc.201500270.
  • Lesellier, E.; Fougere, L.; Poe, D. P. Kinetic Behaviour in Supercritical Fluid Chromatography with Modified Mobile Phase for 5μm Particle Size and Varied Flow Rates. J. Chromatogr. A. 2011, 1218(15), 2058–2064. DOI: 10.1016/j.chroma.2010.12.057.
  • Berger, T. A.;. Separation of Polar Solutes by Packed Column Supercritical Fluid Chromatography. J. Chromatogr. A. 1997, 785(1), 3–33. DOI: 10.1016/S0021-9673(97)00849-2.
  • DaSilva, J. O.; Coes, B.; Frey, L.; Mergelsberg, I.; McClain, R.; Nogle, L.; Welch, C. J. Evaluation of Non-Conventional Polar Modifiers on Immobilized Chiral Stationary Phases for Improved Resolution of Enantiomers by Supercritical Fluid Chromatography. J. Chromatogr. A. 2014, 1328, 98–103. DOI: 10.1016/j.chroma.2013.12.073.
  • Tarafder, A.; Hill, J. F. Scaling Rule in SFC. II. A Practical Rule for Isocratic Systems. J. Chromatogr. A. 2017, 1482, 65–75. DOI: 10.1016/j.chroma.2016.12.044.
  • Hamman, C.; Schmidt, D. E.; Wong, M.; Hayes, M. The Use of Ammonium Hydroxide as an Additive in Supercritical Fluid Chromatography for Achiral and Chiral Separations and Purifications of Small, Basic Medicinal Molecules. J. Chromatogr. A. 2011, 1218(43), 7886–7894. DOI: 10.1016/j.chroma.2011.08.064.
  • DaSilva, J. O.; Bennett, R.; Mann, B. F. Doing More with Less: Evaluation of the Use of High Linear Velocities in Preparative Supercritical Fluid Chromatography. J. Chromatogr. A. 2019, 1595, 199–206. https://doi.org/10.1016/j.chroma.2019.02.047.
  • Oman, M.; Kotnik, P.; Škerget, M.; Knez, Ž. Supercritical Fluid Chromatography and Scale up Study. Acta Chim. Slov. 2014, 61(4), 746–758.
  • Pirrone, G. F.; Mathew, R. M.; Makarov, A. A.; Bernardoni, F.; Klapars, A.; Hartman, R.; Limanto, J.; Regalado, E. L. Supercritical Fluid Chromatography-Photodiode Array Detection-Electrospray Ionization Mass Spectrometry as a Framework for Impurity Fate Mapping in the Development and Manufacture of Drug Substances. J. Chromatogr. B. 2018, 1080, 42–49. DOI: 10.1016/j.jchromb.2018.02.006.
  • Mattrey, F. T.; Makarov, A. A.; Regalado, E. L.; Bernardoni, F.; Figus, M.; Hicks, M. B.; Zheng, J.; Wang, L.; Schafer, W.; Antonucci, V., et al. Current Challenges and Future Prospects in Chromatographic Method Development for Pharmaceutical Research. TrAC Trends Anal Chem 2017, 95, 36–46. DOI: 10.1016/j.trac.2017.07.021.
  • Harps, L. C.; Joseph, J. F.; Parr, M. K. SFC for Chiral Separations in Bioanalysis. J Pharm Biomed Anal. 2019, 162, 47–59. DOI: 10.1016/j.jpba.2018.08.061.
  • Lesellier, E.;. Usual, Unusual and Unbelievable Retention Behavior in Achiral Supercritical Fluid Chromatography: Review and Discussion. J. Chromatogr. A. 2020, 1614, 460582. DOI: 10.1016/j.chroma.2019.460582.
  • Hofstetter, R. K.; Hasan, M.; Eckert, C.; Link, A. Supercritical Fluid Chromatography. ChemTexts. 2019, 5(3), 13. DOI: 10.1007/s40828-019-0087-2.
  • Grand-Guillaume Perrenoud, A.; Hamman, C.; Goel, M.; Veuthey, J.-L.; Guillarme, D.; Fekete, S. Maximizing Kinetic Performance in Supercritical Fluid Chromatography Using State-of-the-Art Instruments. J. Chromatogr. A. 2013, 1314, 288–297. DOI: 10.1016/j.chroma.2013.09.039.
  • Konya, Y.; Izumi, Y.; Bamba, T. Development of a Novel Method for Polar Metabolite Profiling by Supercritical Fluid Chromatography/Tandem Mass Spectrometry. J. Chromatogr. A. 2020, 1632, 461587. DOI: 10.1016/j.chroma.2020.461587.
  • Chollet, C.; Boutet-Mercey, S.; Laboureur, L.; Rincon, C.; Méjean, M.; Jouhet, J.; Fenaille, F.; Colsch, B. A.; Touboul, D. Supercritical Fluid Chromatography Coupled to Mass Spectrometry for Lipidomics. J. Mass Spectrometry. 2019, 54(10), 791–801. DOI: 10.1002/jms.4445.
  • Schulze, S.; Paschke, H.; Meier, T.; Muschket, M.; Reemtsma, T.; Berger, U.; Rapid, A. Method for Quantification of Persistent and Mobile Organic Substances in Water Using Supercritical Fluid Chromatography Coupled to High-Resolution Mass Spectrometry. Anal. Bioanal. Chem. 2020, 412(20), 4941–4952. DOI: 10.1007/s00216-020-02722-5.
  • Desfontaine, V.; Guillarme, D.; Francotte, E.; Nováková, L. Supercritical Fluid Chromatography in Pharmaceutical Analysis. J Pharm Biomed Anal. 2015, 113, 56–71. DOI: 10.1016/j.jpba.2015.03.007.
  • Nováková, L.; Desfontaine, V.; Ponzetto, F.; Nicoli, R.; Saugy, M.; Veuthey, J.-L.; Guillarme, D. Fast and Sensitive Supercritical Fluid Chromatography – Tandem Mass Spectrometry Multi-Class Screening Method for the Determination of Doping Agents in Urine. Anal. Chim. Acta. 2016, 915, 102–110. DOI: 10.1016/j.aca.2016.02.010.
  • Periat, A.; Perrenoud, A.-G.-G.; Guillarme, D. Evaluation of Various Chromatographic Approaches for the Retention of Hydrophilic Compounds and MS Compatibility. J Separation Sci. 2013, 36(19), 3141–3151. DOI: 10.1002/jssc.201300567.
  • West, C.;. Enantioselective Separations with Supercritical Fluids - Review. Current Anal Chem. 2014, 10(1), 99–120. DOI: 10.2174/1573411011410010009.
  • Tarafder, A.;. Metamorphosis of Supercritical Fluid Chromatography to SFC: An Overview. TrAC Trends Anal Chem. 2016, 81, 3–10. DOI: 10.1016/j.trac.2016.01.002.
  • West, C.; Melin, J.; Ansouri, H.; Mengue Metogo, M. Unravelling the Effects of Mobile Phase Additives in Supercritical Fluid Chromatography. Part I: Polarity and Acidity of the Mobile Phase. J. Chromatogr. A. 2017, 1492, 136–143. DOI: 10.1016/j.chroma.2017.02.066.
  • West, C.; Lesellier, E. Effects of Mobile Phase Composition on Retention and Selectivity in Achiral Supercritical Fluid Chromatography. J. Chromatogr. A. 2013, 1302, 152–162. DOI: 10.1016/j.chroma.2013.06.003.
  • Pilařová, V.; Plachká, K.; Khalikova, M. A.; Svec, F.; Nováková, L. Recent Developments in Supercritical Fluid Chromatography – Mass Spectrometry: Is It a Viable Option for Analysis of Complex Samples? TrAC Trends Anal Chem. 2019, 112, 212–225. DOI: 10.1016/j.trac.2018.12.023.
  • Nováková, L.; Perrenoud, A.-G.-G.; Francois, I.; West, C.; Lesellier, E.; Guillarme, D. Modern Analytical Supercritical Fluid Chromatography Using Columns Packed with Sub-2μm Particles: A Tutorial. Anal. Chim. Acta. 2014, 824, 18–35. DOI: 10.1016/j.aca.2014.03.034.
  • Smith, R. M.;. Supercritical Fluids in Separation Science – The Dreams, the Reality and the Future. J. Chromatogr. A. 1999, 856(1), 83–115. DOI: 10.1016/S0021-9673(99)00617-2.
  • Blackwell, J. A.; Stringham, R. W.; Weckwerth, J. D. Effect of Mobile Phase Additives in Packed-Column Subcritical and Supercritical Fluid Chromatography. Anal. Chem. 1997, 69(3), 409–415. DOI: 10.1021/ac9608883.
  • Losacco, G. L.; Veuthey, J.-L.; Guillarme, D. Supercritical Fluid Chromatography – Mass Spectrometry: Recent Evolution and Current Trends. TrAC Trends Anal Chem. 2019, 118, 731–738. DOI: 10.1016/j.trac.2019.07.005.
  • Berger, T. A.; Berger, B.; Majors, R. A Review of Column Development for Supercritical Fluid Chromatography. LCGC North Am. 2010, 28(5), 344–357.
  • Zheng, J.; Taylor, L. T.; Pinkston, J. D.; Mangels, M. L. Effect of Ionic Additives on the Elution of Sodium Aryl Sulfonates in Supercritical Fluid Chromatography. J. Chromatogr. A. 2005, 1082(2), 220–229. DOI: 10.1016/j.chroma.2005.04.086.
  • Cazenave-Gassiot, A.; Boughtflower, R.; Caldwell, J.; Hitzel, L.; Holyoak, C.; Lane, S.; Oakley, P.; Pullen, F.; Richardson, S.; Langley, G. J. Effect of Increasing Concentration of Ammonium Acetate as an Additive in Supercritical Fluid Chromatography Using CO2–Methanol Mobile Phase. J. Chromatogr. A. 2009, 1216(36), 6441–6450. DOI: 10.1016/j.chroma.2009.07.022.
  • Pinkston, J. D.; Stanton, D. T.; Wen, D. Elution and Preliminary Structure-Retention Modeling of Polar and Ionic Substances in Supercritical Fluid Chromatography Using Volatile Ammonium Salts as Mobile Phase Additives. J Separation Sci. 2004, 27(1–2), 115–123. DOI: 10.1002/jssc.200301672.
  • Coan, C. R.; King, A. D., Jr. Solubility of Water in Compressed Carbon Dioxide, Nitrous Oxide, and Ethane. Evidence for Hydration of Carbon Dioxide and Nitrous Oxide in the Gas Phase. J. Amer. Chem. Soc. 1971, 93(8), 1857–1862. DOI: 10.1021/ja00737a004.
  • Ashraf‐Khorassani, M.; Taylor, L. T. Subcritical Fluid Chromatography of Water Soluble Nucleobases on Various Polar Stationary Phases Facilitated with Alcohol-Modified CO2 and Water as the Polar Additive. J Separation Sci. 2010, 33(11), 1682–1691. DOI: 10.1002/jssc.201000047.
  • Płotka, J. M.; Biziuk, M.; Morrison, C.; Namieśnik, J. Pharmaceutical and Forensic Drug Applications of Chiral Supercritical Fluid Chromatography. TrAC Trends Anal Chem. 2014, 56, 74–89. DOI: 10.1016/j.trac.2013.12.012.
  • Alvarez-Rivera, G.; Bueno, M.; Ballesteros-Vivas, D.; Cifuentes, A. Chiral Analysis in Food Science. TrAC Trends Anal Chem. 2020, 123, 115761. DOI: 10.1016/j.trac.2019.115761.
  • Galea, C. M.; Vander Heyden, Y., and Mangelings, D. 2017. Chapter 12 - Separation of Stereoisomers. In Supercritical Fluid Chromatography, Poole, C. F., Ed., 345–379. Amsterdam, Netherlands: Elsevier: doi:10.1016/B978-0-12-809207-1.00012-4.
  • Sekhon, B. S.;. Enantioseparation of Chiral Drugs - an Overview. Int. J. Pharm. Tech. Res. 2010, 2(2), 1584–1594.
  • Nováková, L.; Douša, M.; Losacco, G. L.; Veuthey, J.-L.; Guillarme, D. General Screening and Optimization Strategy for Fast Chiral Separations in Modern Supercritical Fluid Chromatography. Anal. Chim. Acta. 2017, 950, 199–210. DOI: 10.1016/j.aca.2016.11.002.
  • West, C.;. Recent Trends in Chiral Supercritical Fluid Chromatography. TrAC Trends Anal Chem. 2019, 120, 115648. DOI: 10.1016/j.trac.2019.115648.
  • Ilisz, I.; Bajtai, A.; Lindner, W.; Péter, A. Liquid Chromatographic Enantiomer Separations Applying Chiral Ion-Exchangers Based on Cinchona Alkaloids. J. Pharm. Biomed. Anal. 2018, 159, 127–152. DOI: 10.1016/j.jpba.2018.06.045.
  • Hoffmann, C. V.; Pell, R.; Lämmerhofer, M.; Lindner, W. Synergistic Effects on Enantioselectivity of Zwitterionic Chiral Stationary Phases for Separations of Chiral Acids, Bases, and Amino Acids by HPLC. Anal. Chem. 2008, 80(22), 8780–8789. DOI: 10.1021/ac801384f.
  • Orosz, T.; Grecsó, N.; Lajkó, G.; Szakonyi, Z.; Fülöp, F.; Armstrong, D. W.; Ilisz, I.; Péter, A. Liquid Chromatographic Enantioseparation of Carbocyclic β-Amino Acids Possessing Limonene Skeleton on Macrocyclic Glycopeptide-Based Chiral Stationary Phases. Journal of Pharmaceutical and Biomedical Analysis. 2017, 145, 119–126. DOI: 10.1016/j.jpba.2017.06.010.
  • Gordillo, R.;. Supercritical Fluid Chromatography Hyphenated to Mass Spectrometry for Metabolomics Applications. J Separation Sci. 2021, 44(1), 448–463. DOI: 10.1002/jssc.202000805.
  • Bastings, J. J. A. J.; van Eijk, H. M.; Olde Damink, S. W.; Rensen, S. S. D-Amino Acids in Health and Disease: A Focus on Cancer. Nutrients. 2019, 11(9), 2205. DOI: 10.3390/nu11092205.
  • Ashraf‐Khorassani, M.; Fessahaie, M. G.; Taylor, L. T.; Berger, T. A.; Deye, J. F. Rapid and Efficient Separation of PTH-Amino Acids Employing Supercritical CO2 and an Ion Pairing Agent. J High Resolution Chromatography. 1988, 11(4), 352–353. DOI: 10.1002/jhrc.1240110414.
  • Dobashi, A.; Dobashi, Y.; Ono, T.; Hara, S.; Saito, M.; Higashidate, S.; Yamauchi, Y. Enantiomer Resolution of D- and L-Alpha-Amino Acid Derivatives by Supercritical Fluid Chromatography on Novel Chiral Diamide Phases with Carbon Dioxide. J. Chromatogr. 1989, 461, 121–127. DOI: 10.1016/s0021-9673(00)94281-x.
  • Lajkó, G.; Ilisz, I.; Tóth, G.; Fülöp, F.; Lindner, W.; Péter, A. Application of Cinchona Alkaloid-Based Zwitterionic Chiral Stationary Phases in Supercritical Fluid Chromatography for the Enantioseparation of Nα-Protected Proteinogenic Amino Acids. J. Chromatogr. A. 2015, 1415, 134–145. DOI: 10.1016/j.chroma.2015.08.058.
  • Lou, X.; Sheng, Y.; Zhou, L. Investigation of Parameters in the Separation of Amino Acid Enantiomers by Supercritical Fluid Chromatography. J. Chromatogr. A. 1990, 514, 253–257. DOI: 10.1016/S0021-9673(01)89396-1.
  • Liu, Y.; Berthod, A.; Mitchell, C. R.; Xiao, T. L.; Zhang, B.; Armstrong, D. W. Super/Subcritical Fluid Chromatography Chiral Separations with Macrocyclic Glycopeptide Stationary Phases. J. Chromatogr. A. 2002, 978(1), 185–204. DOI: 10.1016/S0021-9673(02)01356-0.
  • Stringham, R. W.;. Chiral Separation of Amines in Subcritical Fluid Chromatography Using Polysaccharide Stationary Phases and Acidic Additives. J. Chromatogr. A. 2005, 1070(1), 163–170. DOI: 10.1016/j.chroma.2005.02.044.
  • West, C.; Bouet, A.; Gillaizeau, I.; Coudert, G.; Lafosse, M.; Lesellier, E. Chiral Separation of Phosphine-Containing Alpha-Amino Acid Derivatives Using Two Complementary Cellulosic Stationary Phases in Supercritical Fluid Chromatography. Chirality. 2010, 22(2), 242–251. DOI: 10.1002/chir.20735.
  • Payagala, T.; Wanigasekara, E.; Armstrong, D. W. Synthesis and Chromatographic Evaluation of New Polymeric Chiral Stationary Phases Based on Three (1s,2s)-(−)-1,2-diphenylethylenediamine Derivatives in HPLC and SFC. Anal. Bioanal. Chem. 2011, 399(7), 2445–2461. DOI: 10.1007/s00216-010-4615-6.
  • Wang, R.-Q.; Ong, -T.-T.; Ng, S.-C. Chemically Bonded Cationic β-Cyclodextrin Derivatives and Their Applications in Supercritical Fluid Chromatography. J. Chromatogr. A. 2012, 1224, 97–103. DOI: 10.1016/j.chroma.2011.12.053.
  • Sánchez-Hernández, L.; Bernal, J. L.; Nozal, M. J.; Del;toribio, L. Chiral Analysis of Aromatic Amino Acids in Food Supplements Using Subcritical Fluid Chromatography and Chirobiotic T2 Column. J Supercritical Fluids. 2016, 107, 519–525. DOI: 10.1016/j.supflu.2015.06.027.
  • Wolrab, D.; Frühauf, P.; Gerner, C.; Kohout, M.; Lindner, W. Consequences of Transition from Liquid Chromatography to Supercritical Fluid Chromatography on the Overall Performance of a Chiral Zwitterionic Ion-Exchanger. J. Chromatogr. A. 2017, 1517, 165–175. DOI: 10.1016/j.chroma.2017.08.022.
  • Vera, C. M.; Shock, D.; Dennis, G. R.; Farrell, W.; Shalliker, R. A. Comparing the Selectivity and Chiral Separation of D- and L- Fluorenylmethyloxycarbonyl Chloride Protected Amino Acids in Analytical High Performance Liquid Chromatography and Supercritical Fluid Chromatography; Evaluating Throughput, Economic and Environmental Impact. J. Chromatogr. A. 2017, 1493, 10–18. DOI: 10.1016/j.chroma.2017.02.017.
  • Khater, S.; Canault, B.; Azzimani, T.; Bonnet, P.; West, C. Thermodynamic Enantioseparation Behavior of Phenylthiohydantoin-Amino Acid Derivatives in Supercritical Fluid Chromatography on Polysaccharide Chiral Stationary Phases. J. Sep. Sci. 2018, 41(6), 1450–1459. DOI: 10.1002/jssc.201701196.
  • Lipka, E.; Dascalu, A.-E.; Messara, Y.; Tsutsqiridze, E.; Farkas, T.; Chankvetadze, B. Separation of Enantiomers of Native Amino Acids with Polysaccharide-Based Chiral Columns in Supercritical Fluid Chromatography. J. Chromatogr. A. 2019, 1585, 207–212. DOI: 10.1016/j.chroma.2018.11.049.
  • Raimbault, A.; Dorebska, M.; West, C. Chromatography–Mass Spectrometry Method to Analyze Free Amino Acids. Anal. Bioanal. Chem. 2019, 411(19), 4909–4917. DOI: 10.1007/s00216-019-01783-5.
  • Miller, L.; Yue, L. Chiral Separation of Underivatized Amino Acids in Supercritical Fluid Chromatography with Chiral Crown Ether Derived Column. Chirality. 2020, 32(7), 981–989. DOI: 10.1002/chir.23204.
  • Lemasson, E.; Bertin, S.; West, C. Use and Practice of Achiral and Chiral Supercritical Fluid Chromatography in Pharmaceutical Analysis and Purification. J Separation Sci. 2016, 39(1), 212–233. DOI: 10.1002/jssc.201501062.
  • Berger, T. A.; Deye, J. F.; Ashraf-Khorassani, M.; Taylor, L. T. Gradient Separation of PTH-Amino Acids Employing Supercritical CO2 and Modifiers. J. Chromatogr. Sci. 1989, 27(3), 105–110. DOI: 10.1093/chromsci/27.3.105.
  • Veuthey, J. L.; Caude, M.; Rosset, R. Separation of Some Amino Acids by Supercritical Fluid Chromatography after a Pre-Derivatization Step with Classical Reagents. Chromatographia. 1989, 27(3), 105–108. DOI: 10.1007/BF02265859.
  • Wolrab, D.; Frühauf, P.; Gerner, C. Direct Coupling of Supercritical Fluid Chromatography with Tandem Mass Spectrometry for the Analysis of Amino Acids and Related Compounds: Comparing Electrospray Ionization and Atmospheric Pressure Chemical Ionization. Anal. Chim. Acta. 2017, 981, 106–115. DOI: 10.1016/j.aca.2017.05.005.
  • Huang, Y.; Wang, T.; Fillet, M.; Crommen, J.; Jiang, Z. Simultaneous Determination of Amino Acids in Different Teas Using Supercritical Fluid Chromatography Coupled with Single Quadrupole Mass Spectrometry. J Pharm. Anal. 2019, 9(4), 254–258. DOI: 10.1016/j.jpha.2019.05.001.
  • Blackwell, J.; Stringham, R. Effect of Mobile Phase Components on the Separation of Polypeptides Using Carbon Dioxide‐Based Mobile Phases. J High Resolution Chromatography. 1999, 22(2), 74–78. DOI: 10.1002/(SICI)1521-4168(19990201)22:2<74::AID-JHRC74>3.0.CO;2-9.
  • Tognarelli, D.; Tsukamoto, A.; Caldwell, J.; Caldwell, W. Rapid Peptide Separation by Supercritical Fluid Chromatography. Bioanalysis. 2009, 2(1), 5–7. DOI: 10.4155/bio.09.165.
  • Patel, M. A.; Riley, F.; Wang, J.; Lovdahl, M.; Taylor, L. T. Packed Column Supercritical Fluid Chromatography of Isomeric Polypeptide Pairs. J. Chromatogr. A. 2011, 1218(18), 2593–2597. DOI: 10.1016/j.chroma.2011.03.005.
  • Liu, J.; Regalado, E.; Mergelsberg, I.; Welch, C. Extending the Range of Supercritical Fluid Chromatography by Use of Water-Rich Modifiers. Org. Biomol. Chem. 2013, 11(30), 4925. DOI: 10.1039/c3ob41121d.
  • Shao, Y.; Wang, C.; Apedo, A.; McConnell, O. Rapid Separation of Five Cyclosporin Analogs by Supercritical Fluid Chromatography. J Anal. Sci. Methods Inst. 2016, 06(2), 23–32. DOI: 10.4236/jasmi.2016.62004.
  • Enmark, M.; Glenne, E.; Leśko, M.; Langborg Weinmann, A.; Leek, T.; Kaczmarski, K.; Klarqvist, M.; Samuelsson, J.; Fornstedt, T. Investigation of Robustness for Supercritical Fluid Chromatography Separation of Peptides: Isocratic Vs Gradient Mode. J. Chromatogr. A. 2018, 1568, 177–187. DOI: 10.1016/j.chroma.2018.07.029.
  • Desfontaine, V.; Losacco, G. L.; Gagnebin, Y.; Pezzatti, J.; Farrell, W. P.; González-Ruiz, V.; Rudaz, S.; Veuthey, J.-L.; Guillarme, D. Applicability of Supercritical Fluid Chromatography – Mass Spectrometry to Metabolomics. I – Optimization of Separation Conditions for the Simultaneous Analysis of Hydrophilic and Lipophilic Substances. J. Chromatogr. A. 2018, 1562, 96–107. DOI: 10.1016/j.chroma.2018.05.055.
  • Schiavone, N. M.; Bennett, R.; Hicks, M. B.; Pirrone, G. F.; Regalado, E. L.; Mangion, I.; Makarov, A. A. Evaluation of Global Conformational Changes in Peptides and Proteins following Purification by Supercritical Fluid Chromatography. J. Chromatogr. B. 2019, 1110–1111, 94–100. DOI: 10.1016/j.jchromb.2019.02.012.
  • Molnár-Perl, I.;. Role of Chromatography in the Analysis of Sugars, Carboxylic Acids and Amino Acids in Food. J. Chromatogr. A. 2000, 891(1), 1–32. DOI: 10.1016/S0021-9673(00)00598-7.
  • Thippeswamy, R.; Gouda, K. G. M.; Rao, D. H.; Martin, A.; Gowda, L. R. Determination of Theanine in Commercial Tea by Liquid Chromatography with Fluorescence and Diode Array Ultraviolet Detection. J. Agric. Food Chem. 2006, 54(19), 7014–7019. DOI: 10.1021/jf061715.
  • Gopaliya, P.; Kamble, P. R.; Kamble, R.; Chauhan, C. S.; Review, A. Article on Supercritical Fluid Chromatography. Int. J. Pharma Res. Rev. 2014, 3(5), 59–66.
  • Rossé, G.;. Supercritical Fluid Chromatography; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2018; Vol. 1. DOI: 10.1515/9783110500776
  • Forgács, E.; Cserháti, T. Chromatography| Principles. In Encyclopedia of Food Sciences and Nutrition, (Second ed.; Caballero, B., Ed.; Academic Press: Oxford, 2003; pp 1259–1267. DOI: 10.1016/B0-12-227055-X/00230-3.
  • Berger, T. A.;. Chromatography: Supercritical Fluid | Instrumentation. In Encyclopedia of Separation Science; Wilson, I. D., Ed.; Academic Press: Oxford, 2007; pp 1–8. DOI: 10.1016/B0-12-226770-2/00471-3.
  • Berger, T. A. Chromatography: Supercritical Fluid | Theory of Supercritical Fluid Chromatography. In Encyclopedia of Separation Science; Wilson, I. D., Ed.; Academic Press: Oxford, 2007; pp 1–9. DOI: 10.1016/B0-12-226770-2/00451-8.