475
Views
2
CrossRef citations to date
0
Altmetric
Review

Fixed Bed Adsorption of Water Contaminants: A Cautionary Guide to Simple Analytical Models and Modeling Misconceptions

ORCID Icon
Pages 75-97 | Received 12 Apr 2021, Accepted 30 Jan 2022, Published online: 27 Apr 2022

REFERENCES

  • Chu, K. H. Fixed Bed Sorption: Setting the Record Straight on the Bohart-Adams and Thomas Models. J. Hazard. Mater. 2010, 177(1–3), 1006–1012. DOI: 10.1016/j.jhazmat.2010.01.019.
  • Chatterjee, A.; Schiewer, S. Biosorption of Cadmium(II) Ions by Citrus Peels in a Packed Bed Column: Effect of Process Parameters and Comparison of Different Breakthrough Curve Models. Clean-Soil Air Water. 2011, 39(9), 874–881. DOI: 10.1002/clen.201000482.
  • Lee, C.-G.; Kim, J.-H.; Kang, J.-K.; Kim, S.-B.; Park, S.-J.; Lee, S.-H.; Choi, J.-W. Comparative Analysis of Fixed-Bed Sorption Models Using Phosphate Breakthrough Curves in Slag Filter Media. Desalin. Water Treat. 2015, 55(7), 1795–1805. DOI: 10.1080/19443994.2014.930698.
  • Chu, K. H. Breakthrough Curve Analysis by Simplistic Models of Fixed Bed Adsorption: In Defense of the Century-Old Bohart-Adams Model. Chem. Eng. J. 2020, 380, 122513. DOI: 10.1016/j.cej.2019.122513.
  • Cooney, D. O. Adsorption Design for Wastewater Treatment; Lewis Publishers: Boca Raton, FL, 1999.
  • Tien, C. Introduction to Adsorption: Basics, Analysis, and Applications; Elsevier: Amsterdam, 2019.
  • Ruthven, D. M. Principles of Adsorption and Adsorption Processes; Wiley: New York, 1984.
  • Suzuki, M. Adsorption Engineering; Kodansha: Tokyo, 1990.
  • Tien, C. Adsorption Calculations and Modeling; Butterworth-Heinemann: Newton, MA, 1994.
  • Worch, E. Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling, 2nd ed.; Walter de Gruyter: Berlin, 2021.
  • Karimifard, S.; Moghaddam, M. R. A. Application of Response Surface Methodology in Physicochemical Removal of Dyes from Wastewater: A Critical Review. Sci. Total Environ. 2018, 640–641, 772–797. DOI: 10.1016/j.scitotenv.2018.05.355.
  • Witek-Krowiak, A.; Chojnacka, K.; Podstawczyk, D.; Dawiec, A.; Pokomeda, K. Application of Response Surface Methodology and Artificial Neural Network Methods in Modelling and Optimization of Biosorption Process. Bioresour. Technol. 2014, 160, 150–160. DOI: 10.1016/j.biortech.2014.01.021.
  • da Rosa Schio, R.; Cruz da Rosa, B.; Salau, N. P. G.; Mallmann, E. S.; Dotto, G. L. Fixed-Bed Adsorption of Allura Red Dye on Chitosan/Polyurethane Foam. Chem. Eng. Technol. 2019, 42(11), 2434–2442. DOI: 10.1002/ceat.201800749.
  • Mora, B. P.; Bellú, S.; Mangiameli, M. F.; Frascaroli, M. I.; González, J. C. Response Surface Methodology and Optimization of Arsenic Continuous Sorption Process from Contaminated Water Using Chitosan. J. Water Process. Eng. 2019, 32, 100913. DOI: 10.1016/j.jwpe.2019.100913.
  • Agani, I.; Fatombi, J. K.; Osseni, S. A.; Idohou, E. A.; Neumeyer, D.; Verelst, M.; Mauricotc, R.; Aminou, T. Removal of Atrazine from Aqueous Solutions onto a Magnetite/Chitosan/Activated Carbon Composite in a Fixed-Bed Column System: Optimization Using Response Surface Methodology. RSC Adv. 2020, 10(68), 41588–41599. DOI: 10.1039/d0ra07873e.
  • Schio, R. R.; Salau, N. P. G.; Mallmann, E. S.; Dotto, G. L. Modeling of Fixed-Bed Dye Adsorption Using Response Surface Methodology and Artificial Neural Network. Chem. Eng. Commun. 2021, 208(8), 1081–1092. DOI: 10.1080/00986445.2020.1746655.
  • El Mouhri, G.; Merzouki, M.; Kachkoul, R.; Belhassan, H.; Miyah, Y.; Amakdouf, H.; Elmountassir, R.; Lahrichi, A. Fixed-Bed Adsorption of Tannery Wastewater Pollutants Using Bottom Ash: An Optimized Process. Surf. Interfaces. 2021, 22, 100868. DOI: 10.1016/j.surfin.2020.100868.
  • Hering, J. G. From Slide Rule to Big Data: How Data Science Is Changing Water Science and Engineering. J. Environ. Eng. 2019, 145(8), 02519001. DOI: 10.1061/(ASCE)EE.1943-7870.0001578.
  • Ghaedi, A. M.; Vafaei, A. Applications of Artificial Neural Networks for Adsorption Removal of Dyes from Aqueous Solution: A Review. Adv. Colloid Interface Sci. 2017, 245, 20–39. DOI: 10.1016/j.cis.2017.04.015.
  • Chittoo, B. S.; Sutherland, C. Column Breakthrough Studies for the Removal and Recovery of Phosphate by Lime-Iron Sludge: Modeling and Optimization Using Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System. Chin. J. Chem. Eng. 2020, 28, 1847–1859. DOI: 10.1016/j.cjche.2020.02.022.
  • Hu, A.; Ren, G.; Che, J.; Guo, Y.; Ye, J.; Zhou, S. Phosphate Recovery with Granular Acid-Activated Neutralized Red Mud: Fixed-Bed Column Performance and Breakthrough Curve Modelling. J. Environ. Sci. 2020, 90, 78–86. DOI: 10.1016/j.jes.2019.10.018.
  • Nag, S.; Bar, N.; Das, S. K. Cr(VI) Removal from Aqueous Solution Using Green Adsorbents in Continuous Bed Column – Statistical and GA-ANN Hybrid Modelling. Chem. Eng. Sci. 2020, 226, 115904. DOI: 10.1016/j.ces.2020.115904.
  • Temel, F. A.; Yolcu, Ö. C.; Kuleyin, A. A Multilayer Perceptron-Based Prediction of Ammonium Adsorption on Zeolite from Landfill Leachate: Batch and Column Studies. J. Hazard. Mater. 2021, 410, 124670. DOI: 10.1016/j.jhazmat.2020.124670.
  • Prabhu, A. A.; Chityala, S.; Jayachandran, D.; Deshavath, N. N.; Veeranki, V. D. A Two Step Optimization Approach for Maximizing Biosorption of Hexavalent Chromium Ions (Cr (VI)) Using Alginate Immobilized Sargassum Sp in A Packed Bed Column. Sep. Sci. Technol. 2021, 56(1), 90–106. DOI: 10.1080/01496395.2019.1708933.
  • Dalhat, M. A.; Mu’azu, N. D.; Essa, M. H. Generalized Decay and Artificial Neural Network Models for Fixed-Bed Phenolic Compounds Adsorption onto Activated Date Palm Biochar. J. Environ. Chem. Eng. 2021, 9(1), 104711. DOI: 10.1016/j.jece.2020.104711.
  • Basheer, I. A.; Najjar, Y. M. Designing and Analyzing Fixed-Bed Adsorption Systems with Artificial Neural Networks. J. Environ. Syst. 1994, 23(3), 291–312. DOI: 10.2190/6AUV-9EH6-WKY8-G5JE.
  • Basheer, I. A.; Najjar, Y. M. Predicting Dynamic Response of Adsorption Columns with Neural Nets. J. Comput. Civ. Eng. 1996, 10(1), 31–39. DOI: 10.1061/(ASCE)0887-3801(1996)10:1(31).
  • Tovar-Gómez, R.; Moreno-Virgen, M. R.; Dena-Aguilar, J. A.; Hernández-Montoya, V.; Bonilla-Petriciolet, A.; Montes-Morán, M. A. Modeling of Fixed-Bed Adsorption of Fluoride on Bone Char Using a Hybrid Neural Network Approach. Chem. Eng. J. 2013, 228, 1098–1109. DOI: 10.1016/j.cej.2013.05.080.
  • Nur, T.; Loganathan, P.; Nguyen, T. C.; Vigneswaran, S.; Singh, G.; Kandasamy, J. Batch and Column Adsorption and Desorption of Fluoride Using Hydrous Ferric Oxide: Solution Chemistry and Modeling. Chem. Eng. J. 2014, 247, 93–102. DOI: 10.1016/j.cej.2014.03.009.
  • Amiri, M. J.; Khozaei, M.; Gil, A. Modification of the Thomas Model for Predicting Unsymmetrical Breakthrough Curves Using an Adaptive Neural-Based Fuzzy Inference System. J. Water Health. 2019, 17(1), 25–36. DOI: 10.2166/wh.2019.210.
  • Solle, D.; Hitzmann, B.; Herwig, C.; Pereira Remelhe, M.; Ulonska, S.; Wuerth, L.; Prata, A.; Steckenreiter, T. Between the Poles of Data-Driven and Mechanistic Modeling for Process Operation. Chem. Ing. Tech. 2017, 89(5), 542–561. DOI: 10.1002/cite.201600175.
  • Dichiara, A. B.; Weinstein, S. J.; Rogers, R. E. On the Choice of Batch or Fixed Bed Adsorption Processes for Wastewater Treatment. Ind. Eng. Chem. Res. 2015, 54(34), 8579–8586. DOI: 10.1021/acs.iecr.5b02350.
  • Marin, P.; Bergamasco, R.; Módenes, A. N.; Paraiso, P. R.; Hamoudi, S. Synthesis and Characterization of Graphene Oxide Functionalized with MnFe2O4 and Supported on Activated Carbon for Glyphosate Adsorption in Fixed Bed Column. Process Saf. Environ. Prot. 2019, 123, 59–71. DOI: 10.1016/j.psep.2018.12.027.
  • Schiesser, W. E. The Numerical Method of Lines: Integration of Partial Differential Equations; Academic Press: San Diego, 1991.
  • Weber, W. J.; Smith, E. H. Simulation and Design Models for Adsorption Processes. Environ. Sci. Technol. 1987, 21(11), 1040–1050. DOI: 10.1021/es00164a002.
  • Petkewich, R. Walter J. Weber, Jr.’s Unique Legacy. Environ. Sci. Technol. 2004, 38(22), 434A–439A. DOI: 10.1021/es040665r.
  • Díaz-Blancas, V.; Aguilar-Madera, C. G.; Flores-Cano, J. V.; Leyva-Ramos, R.; Padilla-Ortega, E.; Ocampo-Pérez, R. Evaluation of Mass Transfer Mechanisms Involved during the Adsorption of Metronidazole on Granular Activated Carbon in Fixed Bed Column. J. Water Process. Eng. 2020, 36, 101303. DOI: 10.1016/j.jwpe.2020.101303.
  • Asasian-Kolur, N.; Sharifian, S.; Kavand, M.; Kaghazchi, T. Batch and Fixed-Bed Mode Mercury Uptake by a Modified Adsorbent. Chem. Eng. Commun. 2021, 208(1), 60–71. DOI: 10.1080/00986445.2019.1689126.
  • Zheng, J.; He, X.; Cai, C.; Xiao, J.; Liu, Y.; Chen, Z.; Pan, B.; Lin, X. Adsorption Isotherm, Kinetics Simulation and Breakthrough Analysis of 5-Hydroxymethylfurfural Adsorption/Desorption Behavior of a Novel Polar-Modified Post-Cross-Linked Poly (Divinylbenzene-co-ethyleneglycoldimethacrylate) Resin. Chemosphere. 2020, 239, 124732. DOI: 10.1016/j.chemosphere.2019.124732.
  • Juchen, P. T.; Veit, M. T.; da Cunha Gonçalves, G.; Palácio, S. M.; Honório, J. F.; Suzaki, P. Y. R. Biosorption of Dye by Malt Bagasse in a Fixed-Bed Column: Experimental and Theoretical Breakthrough Curves. Water Air Soil Pollut. 2021, 232, 128. DOI: 10.1007/s11270-021-05041-2.
  • Jiang, H.; Yang, Y.; Yu, J. Application of Concentration-Dependent HSDM to the Lithium Adsorption from Brine in Fixed Bed Columns. Sep. Purif. Technol. 2020, 241, 116682. DOI: 10.1016/j.seppur.2020.116682.
  • Dabizha, A.; Bahr, C.; Kersten, M. Predicting Breakthrough of Vanadium in Fixed-Bed Absorbent Columns with Complex Groundwater Chemistries: A Multi-Component Granular Ferric Hydroxide−Vanadate−Arsenate−Phosphate−Silicic Acid System. Water Res. X. 2020, 9, 100061. DOI: 10.1016/j.wroa.2020.100061.
  • Bahr, C.; Jekel, M. R.; Kersten, M. Predicting the Breakthrough of Ternary Ca−Uranyl−Carbonate Species in Mineral Water Treated by a Fixed-Bed Granular Ferric Hydroxide Adsorbent. ACS ES&T Water. 2021, 1(2), 366–375. DOI: 10.1021/acsestwater.0c00142.
  • Badran, I.; Qut, O.; Manasrah, A. D., and Abualhasan, M. Continuous Adsorptive Removal of Glimepiride Using Multi-Walled Carbon Nanotubes in Fixed-Bed Column. Environ. Sci. Pollut. Res. 2021, 28, 14694–14706. DOI: 10.1007/s11356-020-11679-y.
  • da Rosa, C. A.; Ostroski, I. C.; Meneguin, J. G.; Gimenes, M. L.; Barros, M. A. S. D. Study of Pb2+ Adsorption in a Packed Bed Column of Bentonite Using CFD. Appl. Clay Sci. 2015, 104, 48–58. DOI: 10.1016/j.clay.2014.11.021.
  • Esfandian, H.; Samadi-Maybodi, A.; Khoshandam, B.; Parvini, M. Experimental and CFD Modeling of Diazinon Pesticide Removal Using Fixed Bed Column with Cu-modified Zeolite Nanoparticle. J. Taiwan Inst. Chem. Eng. 2017, 75, 164–173. DOI: 10.1016/j.jtice.2017.03.024.
  • Vera, M.; Juela, D. M.; Cruzat, C.; Vanegas, E. Modeling and Computational Fluid Dynamic Simulation of Acetaminophen Adsorption Using Sugarcane Bagasse. J. Environ. Chem. Eng. 2021, 9(2), 105056. DOI: 10.1016/j.jece.2021.105056.
  • Rasmuson, A.; Neretnieks, I. Exact Solution of a Model for Diffusion in Particles and Longitudinal Dispersion in Packed Beds. AIChE J. 1980, 26(4), 686–690. DOI: 10.1002/aic.690260425.
  • Cooney, D. O. The Importance of Axial Dispersion in Liquid-Phase Fixed-Bed Adsorption Operations. Chem. Eng. Commun. 1991, 110(1), 217–231. DOI: 10.1080/00986449108939951.
  • Lapidus, L.; Amundson, N. R. Mathematics of Adsorption in Beds. VI. The Effect of Longitudinal Diffusion in Ion Exchange and Chromatographic Columns. J. Phys. Chem. 1952, 56(8), 984–988. DOI: 10.1021/j150500a014.
  • Ogata, A.; Banks, R. B. A Solution of the Differential Equation of Longitudinal Dispersion on Porous Media. Fluid Movement in Earth Materials, Geological Survey Professional Paper 411-A, 1961.
  • Rosen, J. B. Kinetics of a Fixed Bed System for Solid Diffusion into Spherical Particles. J. Chem. Phys. 1952, 20(3), 387–394. DOI: 10.1063/1.1700431.
  • Rosen, J. B. General Numerical Solution for Solid Diffusion in Fixed Beds. Ind. Eng. Chem. 1954, 46(8), 1590–1594. DOI: 10.1021/ie50536a026.
  • Glueckauf, E.; Coates, J. I. Theory of Chromatography. Part IV. The Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation. J. Chem. Soc. 1947, 1315–1321. DOI: 10.1039/jr9470001315.
  • Sircar, S.; Hufton, J. R. Why Does the Linear Driving Force Model for Adsorption Kinetics Work? Adsorption. 2000, 6(2), 137–147. DOI: 10.1023/A:1008965317983.
  • Sircar, S. Adsorbate Mass Transfer into Porous Adsorbents – A Practical Viewpoint. Sep. Purif. Technol. 2018, 192, 383–400. DOI: 10.1016/j.seppur.2017.10.014.
  • Anzelius, A. Über Erwärmung vermittels durchströmender Medien. Z. Angew. Math. Mech. 1926, 6(4), 291–294. DOI: 10.1002/zamm.19260060404.
  • Thomas, H. C. Chromatography: A Problem in Kinetics. Ann. N.Y. Acad. Sci. 1948, 49(2), 161–182. DOI: 10.1111/j.1749-6632.1948.tb35248.x.
  • Hiester, N. K.; Vermeulen, T. Saturation Performance of Ion-Exchange and Adsorption Columns. Chem. Eng. Prog. 1952, 48(10), 505–516.
  • Klinkenberg, A. Numerical Evaluation of Equations Describing Transient Heat and Mass Transfer in Packed Solids. Ind. Eng. Chem. 1948, 40(10), 1992–1994. DOI: 10.1021/ie50466a034.
  • Thomas, H. C. Heterogeneous Ion Exchange in a Flowing System. J. Am. Chem. Soc. 1944, 66(10), 1664–1666. DOI: 10.1021/ja01238a017.
  • Bohart, G. S.; Adams, E. Q. Some Aspects of the Behavior of Charcoal with respect to Chlorine. J. Am. Chem. Soc. 1920, 42(3), 523–544. DOI: 10.1021/ja01448a018.
  • Yoon, Y. H.; Nelson, J. A. Application of Gas Adsorption Kinetics. I. A Theoretical Model for Respirator Cartridge Service Life. Am. Ind. Hyg. Assoc. J. 1984, 45(8), 509–516. DOI: 10.1080/15298668491400197.
  • LeVan, M. D.; Carta, G.; Ritter, J. A.; Walton, K. S. Adsorption and Ion Exchange. In Perry’s Chemical Engineers’ Handbook, 9th ed.; Green, D. W., Southard, M. Z., Eds.; McGraw-Hill Education: New York, 2019; pp 16–32.
  • Weber, T. W.; Chakravorti, R. K. Pore and Solid Diffusion Models for Fixed-Bed Adsorbers. AIChE J. 1974, 20(2), 228–238. DOI: 10.1002/aic.690200204.
  • Yoshida, H.; Kataoka, T.; Ruthven, D. M. Analytical Solution of the Breakthrough Curve for Rectangular Isotherm Systems. Chem. Eng. Sci. 1984, 39(10), 1489–1497. DOI: 10.1016/0009-2509(84)80007-X.
  • Amundson, N. R. A Note on the Mathematics of Adsorption in Beds. J. Phys. Colloid Chem. 1948, 52(7), 1153–1157. DOI: 10.1021/j150463a007.
  • Hu, Q.; Zhang, Z. Comment on “Breakthrough Curve Analysis by Simplistic Models of Fixed Bed Adsorption: In Defense of the Century-Old Bohart-Adams Model.” Chem. Eng. J. 2020, 394, 124511. DOI: 10.1016/j.cej.2020.124511.
  • Chu, K. H. Rebuttal to Comment on “Breakthrough Curve Analysis by Simplistic Models of Fixed Bed Adsorption: In Defense of the Century-Old Bohart-Adams Model.” Chem. Eng. J. 2020, 398, 125546. DOI: 10.1016/j.cej.2020.125546.
  • Michaels, A. S. Simplified Method of Interpreting Kinetic Data in Fixed-bed Ion Exchange. Ind. Eng. Chem. 1952, 44(8), 1922–1930. DOI: 10.1021/ie50512a049.
  • Walter, J. E. Rate-Dependent Chromatographic Adsorption. J. Chem. Phys. 1945, 13(8), 332–336. DOI: 10.1063/1.1724045.
  • Miura, K.; Hashimoto, K. Analytical Solutions for the Breakthrough Curves of Fixed-Bed Adsorbers under Constant Pattern and Linear Driving Force Approximations. J. Chem. Eng. Jpn. 1977, 10(6), 490–493. DOI: 10.1252/jcej.10.490.
  • Chern, J.-M.; Chien, Y.-W. Adsorption Isotherms of Benzoic Acid onto Activated Carbon and Breakthrough Curves in Fixed-Bed Columns. Ind. Eng. Chem. Res. 2001, 40(17), 3775–3780. DOI: 10.1021/ie010175x.
  • Chern, J.-M.; Chien, Y.-W. Adsorption of Nitrophenol onto Activated Carbon: Isotherms and Breakthrough Curves. Water Res. 2002, 36(3), 647–655. DOI: 10.1016/S0043-1354(01)00258-5.
  • Klotz, I. M. The Adsorption Wave. Chem. Rev. 1946, 39(2), 241–268. DOI: 10.1021/cr60123a003.
  • Dole, M.; Klotz, I. M. Sorption of Chloropicrin and Phosgene on Charcoal from a Flowing Gas Stream. Ind. Eng. Chem. 1946, 38(12), 1289–1297. DOI: 10.1021/ie50444a023.
  • Dole, M. The Rate of Adsorption of Phosgene and Chloropicrin on Charcoal. J. Chem. Phys. 1947, 15(7), 447–454. DOI: 10.1063/1.1746563.
  • Eckenfelder, W. W., Jr. Industrial Water Pollution Control; McGraw-Hill: Boston, 1967.
  • Eckenfelder, W. W.; Ford, D. L. Water Pollution Control: Experimental Procedures for Process Design; Pemberton Press: Austin, 1970.
  • Ramalho, R. S. Introduction to Wastewater Treatment Processes; Academic Press: New York, 1977.
  • Hutchins, R. A. New Method Simplifies Design of Activated-Carbon Systems. Chem. Eng. 1973, 80(19), 133–138.
  • Poots, V. J. P.; McKay, G.; Healy, J. J. The Removal of Acid Dye from Effluent Using Natural Adsorbents—I. Peat. Water Res. 1976, 10(12), 1061–1066. DOI: 10.1016/0043-1354(76)90036-1.
  • Ko, D. C. K.; Porter, J. F.; McKay, G. Optimised Correlations for the Fixed-Bed Adsorption of Metal Ions on Bone Char. Chem. Eng. Sci. 2000, 55(23), 5819–5829. DOI: 10.1016/S0009-2509(00)00416-4.
  • Ma, A.; Barford, J. P.; McKay, G. Application of the BDST Model for Nickel Removal from Effluents by Ion Exchange. Desalin. Water Treat. 2014, 52(40–42), 7866–7877. DOI: 10.1080/19443994.2013.833869.
  • Reynolds, T. D. Unit Operations and Processes in Environmental Engineering; Belmont: Wadsworth, 1982.
  • Viraraghavan, T.; Mathavan, G. N. Use of Peat in the Removal of Oil from Produced Waters. Environ. Technol. Lett. 1989, 10(4), 385–394. DOI: 10.1080/09593338909384754.
  • Kapoor, A.; Viraraghavan, T. Removal of Heavy Metals from Aqueous Solutions Using Immobilized Fungal Biomass in Continuous Mode. Water Res. 1998, 32(6), 1968–1977. DOI: 10.1016/s0043-1354(97)00417-x.
  • Yan, G.; Viraraghavan, T.; Chen, M. A New Model for Heavy Metal Removal in A Biosorption Column. Adsorp. Sci. Technol. 2001, 19(1), 25–43. DOI: 10.1260/0263617011493953.
  • Pokhrel, D.; Viraraghavan, T. Arsenic Removal in an Iron Oxide-Coated Fungal Biomass Column: Analysis of Breakthrough Curves. Bioresour. Technol. 2008, 99(6), 2067–2071. DOI: 10.1016/j.biortech.2007.04.023.
  • Srinivasan, A.; Viraraghavan, T. Oil Removal in a Biosorption Column Using Immobilized M. Rouxii Biomass. Desalin. Water Treat. 2014, 52(16–18), 3085–3095. DOI: 10.1080/19443994.2013.800287.
  • Aksu, Z. Application of Biosorption for the Removal of Organic Pollutants: A Review. Process Biochem. 2005, 40(3–4), 997–1026. DOI: 10.1016/j.procbio.2004.04.008.
  • Vijayaraghavan, K.; Yun, Y.-S. Bacterial Biosorbents and Biosorption. Biotechnol. Adv. 2008, 26(3), 266–291. DOI: 10.1016/j.biotechadv.2008.02.002.
  • Park, D.; Yun, Y.-S.; Park, J. M. The Past, Present, and Future Trends of Biosorption. Biotechnol. Bioprocess Eng. 2010, 15, 86–102. DOI: 10.1007/s12257-009-0199-4.
  • Xu, Z.; Cai, J.; Pan, B. Mathematically Modeling Fixed-Bed Adsorption in Aqueous Systems. J. Zhejiang Univ. Sci. A. 2013, 14(3), 155–176. DOI: 10.1631/jzus.A1300029.
  • Abdi, J.; Abedini, H. MOF-Based Polymeric Nanocomposite Beads as an Efficient Adsorbent for Wastewater Treatment in Batch and Continuous Systems: Modelling and Experiment. Chem. Eng. J. 2020, 400, 125862. DOI: 10.1016/j.cej.2020.125862.
  • Chen, B.; Cao, Y.; Zhao, H.; Long, F.; Feng, X.; Li, J.; Pan, X. A Novel Fe3+-Stabilized Magnetic Polydopamine Composite for Enhanced Selective Adsorption and Separation of Methylene Blue from Complex Wastewater. J. Hazard. Mater. 2020, 392, 122263. DOI: 10.1016/j.jhazmat.2020.122263.
  • Pap, S.; Kirk, C.; Bremner, B.; Sekulic, M. T.; Shearer, L.; Gibb, S. W.; Taggart, M. A. Low-Cost Chitosan-Calcite Adsorbent Development for Potential Phosphate Removal and Recovery from Wastewater Effluent. Water Res. 2020, 173, 115573. DOI: 10.1016/j.watres.2020.115573.
  • Du, L.; Yang, J.; Xu, X. Highly Enhanced Adsorption of Dimethyl Disulfide from Model Oil on MOF-199/Attapulgite Composites. Ind. Eng. Chem. Res. 2019, 58, 2009–2016. DOI: 10.1021/acs.iecr.8b04277.
  • Mondal, S.; Maurya, B. L.; Majumder, S. K. Lead Adsorption in a Serpentine Millichannel-based Packed-bed Device: Effect of Hydrodynamics and Mixing Characteristics. AIChE J. 2021, 67(7), e17238. DOI: 10.1002/aic.17238.
  • Han, X.; Zhang, Y.; Zheng, C.; Yu, X.; Li, S.; Wei, W. Enhanced Cr(VI) Removal from Water Using a Green Synthesized Nanocrystalline Chlorapatite: Physicochemical Interpretations and Fixed-Bed Column Mathematical Model Study. Chemosphere. 2021, 264(Part 1), 128421. DOI: 10.1016/j.chemosphere.2020.128421.
  • Khalfa, L.; Sdiri, A.; Bagane, M.; Cervera, M. L. A Calcined Clay Fixed Bed Adsorption Studies for the Removal of Heavy Metals from Aqueous Solutions. J. Clean. Prod. 2021, 278, 123935. DOI: 10.1016/j.jclepro.2020.123935.
  • Wang, H.; Cai, J.; Liao, Z.; Jawad, A.; Ifthikar, J.; Chen, Z.; Chen, Z. Black Liquor as Biomass Feedstock to Prepare Zero-Valent Iron Embedded Biochar with Red Mud for Cr(VI) Removal: Mechanisms Insights and Engineering Practicality. Bioresour. Technol. 2020, 311, 123553. DOI: 10.1016/j.biortech.2020.123553.
  • Aboelfetoh, E. F.; Elabedien, M. E. Z.; Ebeid, E.-Z. M. Effective Treatment of Industrial Wastewater Applying SBA-15 Mesoporous Silica Modified with Graphene Oxide and Hematite Nanoparticles. J. Environ. Chem. Eng. 2021, 9(1), 104817. DOI: 10.1016/j.jece.2020.104817.
  • Abbasi, M.; Safari, E.; Baghdadi, M.; Janmohammadi, M. Enhanced Adsorption of Heavy Metals in Groundwater Using Sand Columns Enriched with Graphene Oxide: Lab-Scale Experiments and Process Modeling. J. Water Process. Eng. 2021, 40, 101961. DOI: 10.1016/j.jwpe.2021.101961.
  • Soberman, M. J.; Farnood, R. R.; Tabe, S. Functionalized Powdered Activated Carbon Electrospun Nanofiber Membranes for Adsorption of Micropollutants. Sep. Purif. Technol. 2020, 253, 117461. DOI: 10.1016/j.seppur.2020.117461.
  • Niu, Y.; Ying, D.; Jia, J. Continuous Adsorption of Copper Ions by Chitosan-Based Fiber in Adsorption Bed. J. Environ. Eng. 2019, 145(8), 04019041. DOI: 10.1061/(ASCE)EE.1943-7870.0001530.
  • Yaqubi, O.; Tai, M. H.; Mitra, D.; Gerente, C.; Neoh, K. G.; Wang, C.-H.; Andres, Y. Adsorptive Removal of Tetracycline and Amoxicillin from Aqueous Solution by Leached Carbon Black Waste and Chitosan-Carbon Composite Beads. J. Environ. Chem. Eng. 2021, 9(1), 104988. DOI: 10.1016/j.jece.2020.104988.
  • Wang, Z.; Kang, S. B.; Won, S. W. Selective Adsorption of Palladium(II) from Aqueous Solution Using Epichlorohydrin Crosslinked Polyethylenimine-Chitin Adsorbent: Batch and Column Studies. J. Environ. Chem. Eng. 2021, 9(2), 105058. DOI: 10.1016/j.jece.2021.105058.
  • Zhou, C.; An, Y.; Zhang, W.; Yang, D.; Tang, J.; Ye, J.; Zhou, Z. Inhibitory Effects of Ca2+ on Ammonium Exchange by Zeolite in the Long-Term Exchange and NaClO–NaCl Regeneration Process. Chemosphere. 2021, 263, 128216. DOI: 10.1016/j.chemosphere.2020.128216.
  • Ramesh, P.; Padmanabhan, V.; Arunadevi, R.; Sudha, P. N.; Mustafa, A. E.-Z. M. A.; Ahmed, A. A.-G.; Alajmi, A. H.; Elshikh, M. S. Batch and Column Mode Removal of the Turquoise Blue (TB) over Bio-Char Based Adsorbent from Prosopis Juliflora: Comparative Study. Chemosphere. 2021, 271, 129426. DOI: 10.1016/j.chemosphere.2020.129426.
  • Jain, P.; Sahoo, K.; Mahiya, L.; Ojha, H.; Trivedi, H.; Parmar, A. S.; Kumar, M. Color Removal from Model Dye Effluent Using PVA-GA Hydrogel Beads. J. Environ. Manage. 2021, 281, 111797. DOI: 10.1016/j.jenvman.2020.111797.
  • Das, L.; Das, P.; Bhowal, A.; Bhattachariee, C. Treatment of Malachite Green Dye Containing Solution Using Bio-Degradable Sodium Alginate/NaOH Treated Activated Sugarcane Baggsse Charcoal Beads: Batch, Optimization Using Response Surface Methodology and Continuous Fixed Bed Column Study. J. Environ. Manage. 2020, 276, 111272. DOI: 10.1016/j.jenvman.2020.111272.
  • Liu, J.; Yin, Q.; Zhang, H.; Yan, Y.; Yi, Z. Continuous Removal of Cr(VI) and Orange II over a Novel Fe0-NaA Zeolite Membrane Catalyst. Sep. Purif. Technol. 2019, 209, 734–740. DOI: 10.1016/j.seppur.2018.07.030.
  • Cao, W.; Ao, H.; Wang, Z.; Zhou, Z.; Li, F.; Yuan, B. Cr(VI) Removal from Water by Fixed-Bed Column Filled with Modified Corn Stalk. Environ. Eng. Sci. 2019, 36(9), 1070–1078. DOI: 10.1089/ees.2018.0467.
  • Wang, L.; Yang, C.; Lu, A.; Liu, S.; Pei, Y.; Luo, X. An Easy and Unique Design Strategy for Insoluble Humic Acid/Cellulose Nanocomposite Beads with Highly Enhanced Adsorption Performance of Low Concentration Ciprofloxacin in Water. Bioresour. Technol. 2020, 302, 122812. DOI: 10.1016/j.biortech.2020.122812.
  • Oladipo, A. A.; Ahaka, E. O.; Gazi, M. Pyrochar/AgBr-Derived from Discarded Chewing Gum for Decontamination of Trichlorophenol via Fixed-Bed Adsorption System. Chem. Eng. Commun. 2021, 208(2), 220–232. DOI: 10.1080/00986445.2019.1705792.
  • Boyer, P. M.; Hsu, J. T. Effects of Ligand Concentration on Protein Adsorption in Dye-Ligand Adsorbents. Chem. Eng. Sci. 1992, 47(1), 241–251. DOI: 10.1016/0009-2509(92)80218-2.
  • Yuan, G.; Zhao, B.; Chu, K. H. Adsorption of Fluoride by Porous Adsorbents: Estimating Pore Diffusion Coefficients from Batch Kinetic Data. Environ. Eng. Res. 2020, 25(5), 645–651. DOI: 10.4491/eer.2019.205.
  • Loebenstein, W. V. The Exchange of 45Ca and 32P with Hydroxyapatite as Interpreted by Adsorption from Solution. J. Colloid Interface Sci. 1971, 36(2), 234–246. DOI: 10.1016/0021-9797(71)90168-8.
  • Apiratikul, R.; Chu, K. H. Improved Fixed Bed Models for Correlating Asymmetric Adsorption Breakthrough Curves. J. Water Process. Eng. 2021, 40, 101810. DOI: 10.1016/j.jwpe.2020.101810.
  • McCuen, R. H.; Surbeck, C. Q. An Alternative to Specious Linearization of Environmental Models. Water Res. 2008, 42(15), 4033–4040. DOI: 10.1016/j.watres.2008.05.030.
  • El-Khaiary, M. I.; Malash, G. F. Common Data Analysis Errors in Batch Adsorption Studies. Hydrometallurgy. 2011, 105(3–4), 314–320. DOI: 10.1016/j.hydromet.2010.11.005.
  • Canzano, S.; Iovino, P.; Leone, V.; Salvestrini, S.; Capasso, S. Use and Misuse of Sorption Kinetic Data: A Common Mistake that Should Be Avoided. Adsorpt. Sci. Technol. 2012, 30(3), 217–225. DOI: 10.1260/0263-6174.30.3.217.
  • Douven, S.; Paez, C. A.; Gommes, C. J. The Range of Validity of Sorption Kinetic Models. J. Colloid Interface Sci. 2015, 448, 437–450. DOI: 10.1016/j.jcis.2015.02.053.
  • Simonin, J. P. On the Comparison of Pseudo-First Order and Pseudo-Second Order Rate Laws in the Modeling of Adsorption Kinetics. Chem. Eng. J. 2016, 300, 254–263. DOI: 10.1016/j.cej.2016.04.079.
  • Rodrigues, A. E.; Silva, C. M. What’s Wrong with Lagergreen Pseudo First Order Model for Adsorption Kinetics? Chem. Eng. J. 2016, 306, 1138–1142. DOI: 10.1016/j.cej.2016.08.055.
  • Tien, C.; Ramarao, B. V. On the Significance and Utility of the Lagergren Model and the Pseudo Second Order Model of Batch Adsorption. Sep. Sci. Technol. 2017, 52(6), 975–986. DOI: 10.1080/01496395.2016.1274327.
  • Schwaab, M.; Steffani, E.; Barbosa-Coutinho, E.; Severo Júnior, J. B. Critical Analysis of Adsorption/Diffusion Modelling as a Function of Time Square Root. Chem. Eng. Sci. 2017, 173, 179–186. DOI: 10.1016/j.ces.2017.07.037.
  • Tran, H. N.; You, S. J.; Hosseini-Bandegharaei, A.; Chao, H. P. Mistakes and Inconsistencies regarding Adsorption of Contaminants from Aqueous Solutions: A Critical Review. Water Res. 2017, 120, 88–116. DOI: 10.1016/j.watres.2017.04.014.
  • Xiao, Y.; Azaiez, J.; Hill, J. M. Erroneous Application of Pseudo-Second-Order Adsorption Kinetics Model: Ignored Assumptions and Spurious Correlations. Ind. Eng. Chem. Res. 2018, 57(7), 2705–2709. DOI: 10.1021/acs.iecr.7b04724.
  • Wang, Z.; Giammar, D. E. Tackling Deficiencies in the Presentation and Interpretation of Adsorption Results for New Materials. Environ. Sci. Technol. 2019, 53(10), 5543–5544. DOI: 10.1021/acs.est.9b02449.
  • Inglezakis, V. J.; Fyrillas, M. M.; Park, J. Variable Diffusivity Homogeneous Surface Diffusion Model and Analysis of Merits and Fallacies of Simplified Adsorption Kinetics Equations. J. Hazard. Mater. 2019, 367, 224–245. DOI: 10.1016/j.jhazmat.2018.12.023.
  • Hubbe, M. A.; Azizian, S.; Douven, S. Implications of Apparent Pseudo-Second-Order Adsorption Kinetics onto Cellulosic Materials: A Review. Bioresources. 2019, 14(3), 7582–7626. DOI: 10.15376/biores.14.3.7582-7626.
  • Cherkasov, N. Liquid-Phase Adsorption: Common Problems and How We Could Do Better. J. Mol. Liq. 2020, 301, 112378. DOI: 10.1016/j.molliq.2019.112378.
  • Brandani, S. Kinetics of Liquid Phase Batch Adsorption Experiments. Adsorption. 2021, 27, 353–368. DOI: 10.1007/s10450-020-00258-9.
  • Hubbe, M. A. Insisting upon Meaningful Results from Adsorption Experiments. Sep. Purif. Rev. 2022, 51(2), 212–225. DOI: 10.1080/15422119.2021.1888299.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.