235
Views
2
CrossRef citations to date
0
Altmetric
Review

Structural Design and Performance Analysis of Three-Phase Hydrocyclones (3PH)

, , , , &
Pages 157-179 | Received 15 Mar 2022, Accepted 03 Apr 2023, Published online: 12 Apr 2023

References

  • Abdollahzadeh, L.; Mazraeno, M. S.; Hosseini, S. N.; Fazlali, A.; Soury, E.; Habibian, M.; Khatami, M. Numerical and Experimental Biomass Separation from Fermentation Process by Minihydrocyclones. Chem. Eng. Technol. 2021, 44(1), 23–30. DOI: 10.1002/ceat.202000130.
  • Chu, L. Y.; Chen, W. M.; Lee, X. Z. Effect of Structural Modification on Hydrocyclone Performance. Sep. Purif. Technol. 2000, 21(1–2), 71–86. DOI: 10.1016/S1383-5866(00)00192-1.
  • Vakamalla, T. R.; Mangadoddy, N. Numerical Simulation of Industrial Hydrocyclones Performance: Role of Turbulence Modelling. Sep. Purif. Technol. 2017, 176, 23–39. DOI: 10.1016/j.seppur2016.11.049.
  • Fu, P. B.; Wang, F.; Yang, X. J.; Ma, L.; Cui, X.; Wang, H. -L. Inlet Particle-Sorting Cyclone for the Enhancement of PM2.5 Separation. Environ. Sci. Technol. 2017, 51(3), 1587–1594. DOI: 10.1021/acs.est.6b04418.
  • Restarick, C. J. Adjustable Onstream Classification Using a Two Stage Cylinder-Cyclone. Miner. Eng. 1991, 4(3–4), 279–288. DOI: 10.1016/0892-6875(91)90136-J.
  • Kharoua, N.; Khezzar, L.; Nemouchi, Z. Hydrocyclones for Deoiling Applications - a Review. Petrol Sci. Technol. 2010, 28(7), 738–755. DOI: 10.1080/10916460902804721.
  • Mognon, J. L.; Da Silva, J. M.; Bicalho, I. C.; Ataíde, C. H.; Duarte, C. R. Modular Mini-Hydrocyclone Desilter Type of 30 Mm: An Experimental and Optimization Study. J. Pet. Sci. Eng. 2015, 129, 145–152. DOI: 10.1016/j.petrol.2015.02.037.
  • Chu, K.; Chen, J.; Yu, A. B.; Williams, R. A. Numerical Studies of Multiphase Flow and Separation Performance of Natural Medium Cyclones for Recovering Waste Coal. Powder Technol. 2017, 314, 532–541. DOI: 10.1016/j.powtec.2016.10.047.
  • Yu, J. F.; Fu, J.; Cheng, H.; Cui, Z. Recycling of Rare Earth Particle by Mini-Hydrocyclones. Waste Manag. 2017, 61, 362–371. DOI: 10.1016/J.WASMAN.2016.12.014.
  • Bayo, J.; López-Castellanos, J.; Martínez-García, R.; Alcolea, A.; Lardín, C. Hydrocyclone as a Cleaning Device for Anaerobic Sludge Digesters in a Wastewater Treatment Plant. J. Clean. Prod. 2015, 87, 550–557. DOI: 10.1016/j.jclepro.2014.10.064.
  • Krokhina, A. V.; Lvov, V. A.; Pavlikhin, G. P. A Probabilistic-Statistical Model of the Particle Classification Process in Small Hydrocyclone Classifiers. Chem. Eng. Technol. 2017, 40(5), 967–972. DOI: 10.1002/ceat.201600602.
  • Gonçalves, S. M.; Barrozo, M. A. S.; Vieira, L. G. M. Effects of Solids Concentration and Underflow Diameter on the Performance of a Newly Designed Hydrocyclone. Chem. Eng. Technol. 2017, 40(10), 1750–1757. DOI: 10.1002/ceat.201600496.
  • Narasimha, M.; Mainza, A. N.; Holtham, P. N.; Powell, M. S.; Brennan, M. S. A Semi-Mechanistic Model of Hydrocyclones - Developed from Industrial Data and Inputs from CFD. Int. J. Miner. Process. 2014, 133, 1–12. DOI: 10.1016/j.minpro.2014.08.006.
  • Neesse, T.; Dueck, J.; Schwemmer, H.; Farghaly, M. Using a High Pressure Hydrocyclone for Solids Classification in the Submicron Range. Miner. Eng. 2015, 71, 85–88. DOI: 10.1016/J.MINENG.2014.10.017.
  • Fan, P. P.; Peng, H. T.; Fan, M. Q. Using a Permanent Magnetic Field to Manipulate the Separation Effect of a Dense Medium Cyclone. Sep. Sci. Technol. 2016, 51(11), 1913–1923. 1913–1923. DOI: 10.1080/01496395.2016.1178291.
  • Yurdem, H.; Demir, V.; Degirmencioglu, A. Development of a Mathematical Model to Predict Clean Water Head Losses in Hydrocyclone Filters in Drip Irrigation Systems Using Dimensional Analysis. Biosyst. Eng. 2010, 105(4), 495–506. DOI: 10.1016/J.BIOSYSTEMSENG.2010.02.001.
  • Emami, S.; Tabil, L. G.; Tyler, R. T.; Crerar, W. J. Starch–Protein Separation from Chickpea Flour Using a Hydrocyclone. J. Food Eng. 2007, 82(4), 460–465. DOI: 10.1016/j.jfoodeng.2007.03.002.
  • Lee, J. Separation of Fine Organic Particles by a Low-Pressure Hydrocyclone (LPH). Aquac. Eng. 2014, 63, 32–38. DOI: 10.1016/J.AQUAENG.2014.07.002.
  • Burt, M. P.; Thomas, P. R. Analysis of the Hydrocyclone Stock Cleaning Process for Wasted Fibre in a Paper Mill. J. Clean. Prod. 2002, 10(6), 573–579. DOI: 10.1016/S0959-6526(01)00055-5.
  • Romero-Güiza, M. S.; Peces, M.; Astals, S.; Benavent, J.; Valls, J.; Mata-Alvarez, J. Implementation of a Prototypal Optical Sorter as Core of the New Pre-Treatment Configuration of a Mechanical–Biological Treatment Plant Treating OFMSW Through Anaerobic Digestion. Appl. Energy. 2014, 135, 63–70. DOI: 10.1016/J.APENERGY.2014.08.077.
  • Ni, L.; Tian, J. Y.; Zhao, J. N. Feasibility of a Novel de-Foulant Hydrocyclone with Reflux for Flushing Away Foulant Continuously. Appl. Therm. Eng. 2016, 103, 695–704. DOI: 10.1016/J.APPLTHERMALENG.2016.04.017.
  • Vakamalla, T. R.; Koruprolu, V. B. R.; Arugonda, R.; Mangadoddy, N. Development of Novel Hydrocyclone Designs for Improved Fines Classification Using Multiphase CFD Model. Sep. Purif. Technol. 2017, 175, 481–497. DOI: 10.1016/J.SEPPUR.2016.10.026.
  • Wang, B.; Yu, A. B. Numerical Study of the Gas–Liquid–Solid Flow in Hydrocyclones with Different Configuration of Vortex Finder. Chem. Eng. J. 2008, 135(1–2), 33–42. DOI: 10.1016/J.CEJ.2007.04.009.
  • Kang, J. L.; Ciou, Y. C.; Lin, D. Y.; Wong, D. S. H.; Jang, S. S. Investigation of Hydrodynamic Behavior in Random Packing Using CFD Simulation. Chem. Eng. Res. Des. 2019, 147, 43–54. DOI: 10.1016/J.CHERD.2019.04.037.
  • Hwang, K. J.; Hwang, Y. W.; Yoshida, H.; Shigemori, K. Improvement of Particle Separation Efficiency by Installing Conical Top-Plate in Hydrocyclone. Powder Technol. 2012, 232, 41–48. DOI: 10.1016/J.POWTEC.2012.07.059.
  • Young, G. A. B.; Wakley, W. D.; Taggart, D. L.; Andrews, S. L.; Worrell, J. R. Oil–Water Separation Using Hydrocyclones - an Experimental Search for Optimum Dimensions. J. Petrol. Sci. Eng. 1994, 11(1), 37–50. DOI: 10.1016/0920-4105(94)90061-2.
  • Lu, Y. J.; Zhou, F. D.; Shen, X.; Zhou, L. X. LDV Diagnosis of the Flow Field in a Hydrocyclone with a Single Cylinder and a Cone. Chinese J. Appl. Mech. 1997, 29, 395–405.
  • Meyer, M.; Bohnet, M. Influence of Entrance Droplet Size Distribution and Feed Concentration on Separation of Immiscible Liquids Using Hydrocyclones. Chem. Eng. & Tech. 2003, 26(6), 660–665. DOI: 10.1002/ceat.200390100.
  • Dixit, P.; Tiwari, R.; Mukherjee, A. K.; Banerjee, P. K. Application of Response Surface Methodology for Modeling and Optimization of Spiral Separator for Processing of Iron Ore Slime. Powder Technol. 2015, 275, 105–112. DOI: 10.1016/j.powtec.2015.01.068.
  • Hashmi, K. A.; Friesen, W. I.; Bohun, D. A.; Thew, M. T. Application of Hydrocyclones for Treating Produced Fluids in Heavy Oil Recovery. Hydrocyclones 96 Conference, London, 1996, 96, 369–381.
  • Meldrum, N. Hydrocyclones: A Solution to Produced-Water Treatment. SPE Prod. Eng. 1988, 3(4), 669–676. DOI: 10.2118/16642-PA.
  • Tian, J. Y.; Ni, L.; Song, T.; Olson, J.; Zhao, J. N. An Overview of Operating Parameters and Conditions in Hydrocyclones for Enhanced Separations. Sep. Purif. Technol. 2018, 206, 268–285. DOI: 10.1016/j.seppur.2018.06.015.
  • Bednarski, S.; Listewnik, J. Hydrocyclones for Simultaneous Removal of Oil and Solid Particles from Ship’s Oil Waters. International Conference on Hydrocyclones, Paper G2, Oxford. England, 1987, 181–185.
  • Guo, S. P.; Wu, J. X.; Yu, Y.; Dong, L. Progress of Research on Oil-Gas-Water Separator. China Petrol. Mach. 2016, 44(9), 104–108. in Chinese. DOI: 10.16082/j.cnki.issn.1001-4578.2016.09.024.
  • Liu, Y. C.; Cheng, Q. X.; Zhang, B.; Tian, F. Three-Phase Hydrocyclone Separator-A Review. Chem. Eng. Res. Des. 2015, 100, 554–560. DOI: 10.1016/j.cherd.2015.04.026.
  • Colman, D. A.; Thew, M. T.; Lloyd, D. D. The Concept of Hydrocyclones for Separating Light Dispersions and a Comparison of Field Data with Laboratory Work. Proceedings of the 2nd International Conference on Hydrocyclones, Bath, England, 1984, 217–232.
  • Kuang, S. B.; Chu, K. W.; Yu, A. B.; Vince, A. Numerical Study of Liquid–Gas–Solid Flow in Classifying Hydrocyclones: Effect of Feed Solids Concentration. Miner. Eng. 2012, 31, 17–31. DOI: 10.1016/j.mineng.2012.01.003.
  • Al-Kayiem, H. H.; Osei, H.; Hashim, F. M.; Hamza, J. E. Flow Structures and Their Impact on Single and Dual Inlets Hydrocyclone Performance for Oil–water Separation. J. Pet. Explor. Prod. 2019, 9, 2943–2952. DOI: 10.1007/s13202-019-0690-1.
  • Yan, C.; Yang, Q.; Wang, H. L. Simulation on the Flow Field of Mini-Hydrocyclones for Different Inlet Sizes. Adv. Mater. Res. 2014, 864-867, 1183–1191. https://www.scientific.net/AMR.864-867.1183.
  • Ma, Y.; Jin, Y. H.; Wang, Z. B. Simulation of Flow Field in Cyclones Under Two Different Inlet Structures. Chem. Ind. Eng. Prog. 2009, 28, 497–501. s1.049. (in Chinese. DOI: 10.16085/j.issn.1000-6613.2009.
  • Hsiao, T. C.; Chen, D.; Greenberg, P. S.; Street, K. W. Effect of Geometric Configuration on the Collection Efficiency of Axial Flow Cyclones. J. Aerosol. Sci. 2011, 42(2), 78–86. DOI: 10.1016/j.jaerosci.2010.11.004.
  • Pasquier, S.; Cilliers, J. J. Sub-Micron Particle Dewatering Using Hydrocyclones. Chem. Eng. J. 2000, 80(1–3), 283–288. DOI: 10.1016/S1383-5866(00)00103-9.
  • Hwang, K. J.; Wu, W. H.; Qian, S. X.; Nagase, Y. CFD Study on the Effect of Hydrocyclone Structure on the Separation Efficiency of Fine Particles. Sep. Sci. Technol. 2008, 43(15), 3777–3797. DOI: 10.1080/01496390802286637.
  • Obeng, D. P.; Morrell, S. The JK Three-Product Cyclone –Performance and Potential Applications. Int. J. Miner. Process. 2003, 69(1), 129–142. DOI: 10.1016/S0301-7516(02)00125-4.
  • Qian, P.; Ma, J.; Liu, Y.; Yang, X. J.; Zhang, Y. H.; Wang, H. L. Concentration Distribution of Droplets in a Liquid-Liquid Hydrocyclone and Its Application. Chem. Eng. Technol. 2016, 39(5), 953–959. DOI: 10.1002/ceat.201500666.
  • Hwang, K. J.; Chou, S. P. Designing Vortex Finder Structure for Improving the Particle Separation Efficiency of a Hydrocyclone. Sep. Purif. Technol. 2017, 172, 76–84. DOI: 10.1016/J.SEPPUR.2016.08.005.
  • Liu, L.; Zhao, L. X.; Reifsnyder, S.; Gao, S.; Jiang, M. Z.; Huang, X. Q.; Jiang, M. H.; Liu, Y.; Rosso, D. Analysis of Hydrocyclone Geometry via Rapid Optimization Based on Computational Fluid Dynamics. Chem. Eng. Tech. 2021, 44(9), 1693–1707. DOI: 10.1002/ceat.202100121.
  • Lv, W. J.; Huang, C.; Chen, J. Q.; Liu, H. L.; Wang, H. L. An Experimental Study of Flow Distribution and Separation Performance in a UU-Type Mini-Hydrocyclone Group. Sep. Purif. Technol. 2015, 150, 37–43. DOI: 10.1016/j.seppur.2015.06.028.
  • He, F.; Zhang, Y.; Wang, J.; Yang, Q.; Wang, H.; Tan, Y. Flow Patterns in Mini-Hydrocyclones with Different Vortex Finder Depths. Chem. Eng. Technol. 2013, 36(11), 1935–1942. DOI: 10.1002/ceat.201300204.
  • Huang, C.; Wang, J. G.; Wang, J. Y.; Chen, C.; Wang, H. L. Pressure Drop and Flow Distribution in a Mini-Hydrocyclone Group: UU-Type Parallel Arrangement. Sep. Purif. Technol. 2013, 103, 139–150. DOI: 10.1016/j.seppur.2012.10.030.
  • Liu, L.; Zhao, L. X.; Wang, Y. H.; Zhang, S.; Song, M. H.; Huang, X. Q.; Lu, Z. R. Research on the Enhancement of the Separation Efficiency for Discrete Phases Based on Mini Hydrocyclone. J. Mar. Sci. Eng. 2022, 10(11), 1606. DOI: 10.3390/jmse10111606.
  • Liu, L.; Sun, Y.; Kleinmeyer, Z.; Habil, G.; Yang, Q. H.; Zhao, L. X.; Rosso, D. Microplastics Separation Using Stainless Steel Mini-Hydrocyclones Fabricated with Additive Manufacturing. Sci. Total Environ. 2022, 840, 156697. DOI: 10.1016/j.scitotenv.2022.156697.
  • World Mining Equipment. https://www.wme.com/equipment/suppliers/cyclones/ consulted on March 2023.
  • Wang, Q. Q.; Chen, J. Q.; Wang, C. S.; Ji, Y. P.; Shang, C.; Zhang, M.; Shi, Y.; Ding, G. D. Design and Performance Study of a Two-Stage Inline Gas-Liquid Cyclone Separator with Large Range of Inlet Gas Volume Fraction. J. Petrol. Sci. Eng. 2023, 220, 111218. DOI: 10.1016/j.petrol.2022.111218.
  • Zhang, Y.; Wang, Y.; Li, F.; Zhao, L. X.; Jiang, M. H.; Zhang, Y.; Wang, F. S.; Zheng, G. X. Optimal Design of the Linkage Between Two Downhole Hydrocyclones in Series. 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, 2014, OMAE2014–23516. DOI: 10.1115/OMAE2014-23516.
  • Klima, M. S.; Kim, B. H. Multi-Stage Wide-Angle Hydrocyclone Circuits for Removing Fine, High Density Particles from a Low Density Soil Matrix. J. Environ. Sci. Heal. A. 1997, 32(3), 715–733. DOI: 10.1080/10934529709376572.
  • Seureau, J. J.; Aurelle, Y.; Hoyack, M. E. A Three-Phase Separator for the Removal of Oil and Solids from Produced Water. SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 1994. DOI: 10.2118/28535-MS.
  • Zhao, W. J.; Zhao, L. X.; Xu, B. R.; Zhao, Y.; Jiang, M. H. Numerical Simulation Analysis on Degassing Structure Optimisation of a Gas-Liquid-Solid Three-Phase Separation Hydrocyclone Based on the Orthogonal Method. 10th International petroleum technology conference, Thailand, 2016. DOI:10.2523/IPTC-18768-MS.
  • Zheng, X. T.; Gong, C.; Xu, H. B.; Yu, J. Y.; Lin, W.; Xu, C. Verification of Separation Performance of Oil-Water-Gas Cyclone and Optimization of Structure of Liquid-Gas Separation Chamber. J. Wuhan Inst. Tech. 2014, 36(10), 37–41. (in Chinese).
  • Wang, Y. Flow Field Analysis and Structure Optimization of Spiral Structure Three-Phase Separation Hydrocyclone. Master Thesis, Northeast Petroleum University, Daqing, Heilongjiang, PRC, 2017. (in Chinese).
  • Changirwa, R.; Rockwell, M. C.; Frimpong, S.; Szymanski, J. Hybrid Simulation for Oil-Solids-Water Separation in Oil Sands Production. Miner. Eng. 1999, 12(12), 1459–1468. DOI: 10.1016/S0892-6875(99)00134-X.
  • Ahmed, M. M.; Ibrahim, G. A.; Farghaly, M. G. Performance of a Three-Product Hydrocyclone. Int. J. Miner. Process. 2009, 91(1), 34–40. DOI: 10.1016/j.minpro.2008.11.005.
  • Zheng, J. Study on the Gas-Liquid-Sand Three-Phase Hydrocyclones. Master Theses; Dalian University of Technology: Dalian, 2005. PRC (in Chinese).
  • Zhong, Q. Y. Performance Research on the Gas Liquid Solid Triphase Cylindrical Cyclone Separator; Master theses, Dalian University of Technology: Dalian, 2013. PRC (in Chinese).
  • AI, X. Y. Study on Separation Characteristics of Oil-Gas-Water Three-Phase Hydrocyclone; Xi’an: Master theses, Xi’an Shiyou University, 2019. PRC (in Chinese).
  • Ma, J.; He, Q. Y.; Bai, J. H.; Sun, C.; Zhao, Y.; Yang, L.; Zhang, S.; Song, M. H. Impact Analysis of Inlet Structure on Performance of Hydrocyclone with Droplet Size Reconstruction. Mech. Sci. Tech. Aerosp. Eng. 2021, 40(9), 1347–1354. (in Chinese). DOI: 10.13433/j.cnki.1003-8728.20200231.
  • Zhang, S.; Zhao, L. X.; Liu, Y.; Song, M. H.; Liu, L. Analysis of Flow Field Distribution and Separation Characteristics of Degassing and Oil-Removal Hydrocyclone System. Chem. Ind. Eng. Prog. 2022, 41(1), 75–85. in Chinese. DOI: 10.16085/j.issn.1000-6613.2021-0197.
  • Zhao, L. X.; Jiang, M. H.; Xu, B. R.; Zhu, B. J. Development of a New Type High-Efficient Inner-Cone Hydrocyclone. Che. Eng. Res. Des. 2012, 90(12), 2129–2134. DOI: 10.1016/j.cherd.2012.05.013.
  • Aslin, D. J. Inventor. Three Phase Cyclonic Separator. United States Patent US 6348087 B1, February 2002.
  • Showalter, S.; Kosteski, E. G. Inventor. Three-Phase Cyclonic Fluid Separator. United States Patent US 7288138 B2, October 2007.
  • Liu, L.; Zhao, L. X.; Sun, Y.; Gao, S.; Jiang, M. Z.; Jiang, M. H.; Rosso, D. Separation Performance of Hydrocyclones with Medium Rearrangement Internals. J. Environ. Chem. Eng. 2021, 9(4), 105642. DOI: 10.1016/j.jece.2021.105642.
  • Liu, P. K.; Chu, L. Y.; Wang, J.; Yu, Y. F. Enhancement of Hydrocyclone Classification Efficiency for Fine Particles by Introducing a Volute Chamber with a Pre-Sedimentation Function. Chem. Eng. Technol. 2008, 31(3), 474–478. DOI: 10.1002/ceat.200700449.
  • Yang, Q.; Lv, W. J.; Ma, L.; Wang, H. L. CFD Study on Separation Enhancement of Mini-Hydrocyclone by Particulate Arrangement. Sep. Purif. Technol. 2013, 102, 15–25. DOI: 10.1016/j.seppur.2012.09.018.
  • Wang, Z. B.; Chu, L. Y.; Chen, W. M.; Wang, S. G. Experimental Investigation of the Motion Trajectory of Solid Particles Inside the Hydrocyclone by a Lagrange Method. Chem. Eng. J. 2008, 138(1–3), 1–9. DOI: 10.1016/j.cej.2007.05.037.
  • Zhao, L. X.; Jiang, M. H.; Wang, Y. Experimental Study of a Hydrocyclone Under Cyclic Flow Conditions for Fine Particle Separation. Sep. Purif. Technol. 2008, 59(2), 183–189. DOI: 10.1016/j.seppur.2007.06.009.
  • Zhao, L. X.; Jiang, M. H.; Li, F.; Zhang, Y.; Song, M. H.; Xu, B. R. Inventor. Two-Stage Enhanced Separation Hydrocyclone. China Patent CN 102847618A, (in Chinese). January 2013.
  • Li, F.; Zhao, Y. K.; Han, L.; Zhang, M. Experimental Study on Degritting and Degassing of Three-Phase Hydrocyclones. Chem. Eng. Mach. 2011, 38(6), 670–672. in Chinese.
  • Thew, M. Hydrocyclone Redesign for Liquid-Liquid Separation. Chem. Eng. 1986, 7, 17–23.
  • Yu, J. Y.; Xu, C.; Zheng, X. T.; Lin, W.; Nie, S. H.; Gong, C. Inventor. Oil-Gas-Water Three-Phase Cyclone Separator. China Patent CN 203355909U, (in Chinese). December 2013.
  • Lu, Q. Y.; Liu, H.; Song, J. Optimization of Structural Parameters of Integrated Cyclone for Degassing and Oil Removal. Mech. Sci. Tech. Aerosp. Eng. 2020, 39(11), 1691–1697. in Chinese. DOI: 10.13433/j.cnki.1003-8728.20190296.
  • Mainza, A.; Powell, M.; Knopjes, B. A Comparison of Different Cyclones in Addressing Challenges in the Classification of the Dual Density UG2 Platinum Ore. J. Saimm. 2005, 105(5), 241–348.
  • Mainza, A.; Powell, M.; Knopjes, B. Differential Classification of Dense Material in a Three-Product Cyclone. Miner. Eng. 2004, 17(5), 573–579. DOI: 10.1016/j.mineng.2004.01.023.
  • Bednarski, S.; Listewni, K. J. Separation of Liquid-Liquid-Solid Mixtures in a Hydrocyclone Coalescer System. 14th International Conference on Hydrocyclones, Sonthampton, England, 1992, 329–358. DOI: 10.1007/978-94-015-7981-0_21.
  • Changirwa, R.; Rockwell, M. C.; Mutua, D. K. Mathematical Modelling Multiple-Cone Concurrent Three-Phase (CTP) Hydrocyclone Separation. J. Can. Petrol. Technol. 1999, 38(13), 1–9. DOI: 10.2118/99-13-03.
  • Li, Y. S. Flow Field Analyses and Experimental Study on a Degassing and Desanding Hydrocyclone. Master theses, Northeast Petroleum University, Daqing, PRC,2014. (in Chinese).
  • Wang, Y. W. Study on Flow Field Characteristics and Parameter Optimization of Gas-Liquid-Solid Three-Phase Separation Hydrocyclone. Master theses, Northeast Petroleum University, Daqing, PRC,2017. (in Chinese).
  • Zhao, L. X.; Li, Y. Q.; Xu, B. R.; Jiang, M. H. Design and Numerical Simulation Analysis of an Integrative Gas‐liquid‐solid Separation Hydrocyclone. Chem. Eng. Tech. 2016, 38(12), 2146–2152. DOI: 10.1002/ceat.201500093.
  • Gomez, L. E.; Mohan, R. S.; Shoham, O.; Kouba, G. E. Enhanced Mechanistic Model and Field Application Design of Gas-Liquid Cylindrical. Spe. J. 2000, 5(2), 190–198. DOI: 10.2118/62487-PA.
  • Avila, C.; Wang, S. B.; Gomez, L.; Mohan, R. Mathematical Modeling for Integrated Three-Phase Compact Separators; University of Tulsa project: Oklahoma, USA, 2003. https://www.academia.edu/en/56778738/Mathematical_modeling_for_integrated_three_phase_compact_separators.
  • Carlos-Vazquez, O. Multiphase Flow Separation in Liquid-Liquid Cylindrical Cyclone and Gas-Liquid-Liquid Cylindrical Cyclone Compact Separators. Ph.D. Dissertation, The University of Tulsa, Tulsa, OK, USA, 2001.
  • Bai, Z. S.; Wang, H. L.; Tu, S. T. Oil–Water Separation Using Hydrocyclones Enhanced by Air Bubbles. Chem. Eng. Res. Des. 2011, 89(1), 55–59. DOI: 10.1016/j.cherd.2010.04.012.
  • Nenu, R. K. T.; Yoshida, H.; Fukui, K.; Yamamoto, T. Separation Performance of Submicron Silica Particles by Electrical Hydrocyclone. Powder Technol. 2009, 196(2), 147–155. DOI: 10.1016/j.powtec.2009.07.011.
  • Listewnik, J. Design of Special Ships Equipped with Nonconventional de-Oiling Equipment for Cleaning Oily Ship’s Waters and Removal of Oily Spills. T. Built Environ. 2001, 53, 211–220. DOI: 10.2495/MT010201.
  • Bednarski, S. Three-Product Hydrocyclone for Simultaneous Separation of Solids Both Heavier and Heavier and Lighter Than Liquid Medium. Fluid Mech. Appl. 1992, 12, 397–404. DOI: 10.1007/978-94-015-7981-0_24.
  • Restarick, C. J. Classification with Two-Stage Cylinder-Cyclones in Small-Scale Grinding and Flotation Circuits. Int. J. Miner. Process. 1989, 26(3–4), 165–179. DOI: 10.1016/0301-7516(89)90027-6.
  • Wu, H. P. Experimental Study on Gas-Liquid-Solid Three-Phase Separation. Master theses, Daqing Petroleum Institute, Daqing, PRC,2010. (in Chinese).
  • Yang, Q.; Wang, H. L.; Wang, J. G.; Li, Z. M.; Liu, Y. The Coordinated Relationship Between Vortex Finder Parameters and Performance of Hydrocyclones for Separating Light Dispersed Phase. Sep. Purif. Technol. 2011, 79(3), 310–320. DOI: 10.1016/J.SEPPUR.2011.03.012.
  • Razmi, H.; Soltani Goharrizi, A.; Mohebbi, A. CFD Simulation of an Industrial Hydrocyclone Based on Multiphase Particle in Cell (MPPIC) Method. Sep. Purif. Technol. 2019, 209, 851–862. DOI: 10.1016/J.SEPPUR.2018.06.073.
  • Bednarski, S. Three-Product Hydrocyclone for Simultaneous Separation of Solids Both Heavier and Lighter Than Liquid Medium; Springer Netherlands: 1992. DOI: 10.1007/978-94-015-7981-0_24.
  • Mainza, A.; Narasimha, M.; Powell, M. S.; Holtham, P. N.; Brennan, M. Study of Flow Behavior in a Three-Product Cyclone Using Computational Fluid Dynamics. Miner. Eng. 2006, 19(10), 1048–1058. DOI: 10.1016/j.mineng.2006.03.014.
  • Yuan, H. X.; Yan, Q. P.; Li, S. S. Influence of Operating Parameters on Separation Performance of a Three-Phase Hydrocyclone. Modern Chem. Ind. 2016, 36(8), 190–193. in Chinese. DOI: 10.16606/j.cnki.issn0253-4320.2016.08.046.
  • Li, J. P.; Zhao, W.; Li, S. H.; Yang, X. J.; Lyu, S. G.; Liu, Y. D.; Wang, H. L. A Novel Hydrocyclone for Use in Underground DNAPL Phase Separation. Sci. Total Environ. 2022, 842, 156866. DOI: 10.1016/j.scitotenv.2022.156866.
  • Changirwa, R. Phenomenological Separation in a Three-phase Hydrocyclone. PhD theses, Technical University of Nova Scotia, Halifax, Nova Scotia, Canada, 1997.
  • Gong, H. F.; Luo, X.; Peng, Y.; Yu, B.; Yang, Y.; Zhang, H. H. Simulation on the Influence of Inlet Velocity and Solid Separation Gap on the Separation Characteristics of a Separating Device for Three Phases: Oil, Water and Solid. Chem. Eng. Res. Des. 2023, 189, 179–193. DOI: 10.1016/j.cherd.2022.11.033.
  • Gong, H. F.; Luo, X.; Yang, Y.; Huo, C.; Peng, Y.; Yu, B.; Zhang, H. H. Structural Optimization and Separation Characteristic of a Separating Device for Three Phases: Oil, Water and Solid. Process Saf. Environ. 2023, 171, 200–213. DOI: 10.1016/j.psep.2023.01.018.
  • Jiang, M. H.; Zhang, Y. J.; Zhao, L. X. Flow Field Analysis and Structural Optimization of a Three-Phase Hydrocyclone Based on CFD Method. 4th International Conference on Bioinformatics and Biomedical Engineering. 2010. DOI: 10.1109/ICBBE.2010.5517482.
  • Afolabi, E. A.; Lee, J. G. M. Investigating the Separation Efficiency of Air-Water-Oil Flow in a Three Phase Pipe Separator. Elixir. Chem. Eng. 2014, 72, 25511–25515. https://www.elixirpublishers.com/articles/1679134213_201407066.pdf.
  • Thuy, T. L.; SON, I. N.; Young-Il, L.; Chi-Kyun, P.; Byung-Don, L.; Byung-Gook, K.; Dong-Ha, L. Three-Phase Eulerian Computational Fluid Dynamics of Air-Water-Oil Separator Under Off-Shore Operation. J. Petrol. Sci. Eng. 2018, 171, 731–747. DOI: 10.1016/j.petrol.2018.08.001.
  • Colic, M.; Morse, W.; Miller, J. D. The Development and Application of Centrifugal Flotation Systems in Waste Water Treatment. Int. J. Environ. Pollut. 2007, 30(2), 296–312. DOI: 10.1504/IJEP.2007.014706.
  • Jiang, M. H.; Han, L.; Zhao, L. X.; Xia, J. F.; Ma, B.; Xu, L. Study on Separation Performance of Cone-Typed Three-Phase Cyclone Separator. Chem. Eng. Mach. 2011, 38(4), 434–439. PRC (in Chinese).
  • Martínez, L. F.; Lavín, A. G.; Mahamud, M. M.; Bueno, J. L. Vortex Finder Optimum Length in Hydrocyclone Separation. Chem. Eng. Process. Process Intensif. 2008, 47(2), 192–199. DOI: 10.1016/J.CEP.2007.03.003.
  • Motin, A.; Bénard, A. Design of Liquid–Liquid Separation Hydrocyclones Using Parabolic and Hyperbolic Swirl Chambers for Efficiency Enhancement. Chem. Eng. Res. Des. 2017, 122, 184–197. DOI: 10.1016/J.CHERD.2017.04.012.
  • Tian, J. Y.; Ni, L.; Song, T.; Shen, C.; Yao, Y.; Zhao, J. N. Numerical Study of Foulant-Water Separation Using Hydrocyclones Enhanced by Reflux Device: Effect of Underflow Pipe Diameter. Sep. Purif. Technol. 2019, 215, 10–24. DOI: 10.1016/J.SEPPUR.2018.12.081.
  • Cilliers, J. J.; Harrison, S. T. L. Yeast Flocculation Aids the Performance of Yeast Dewatering Using Mini-Hydrocyclones. Sep. Purif. Technol. 2019, 209, 159–163. DOI: 10.1016/j.seppur2018.06.019.
  • Zhang, L. H.; Xiao, H.; Zhang, H. T.; Xu, L. J.; Zhang, D. Optimal Design of a Novel Oil–Water Separator for Raw Oil Produced from ASP Flooding. J. Pet. Sci. Eng. 2007, 59(3–4), 213–218. DOI: 10.1016/j.petrol.2007.04.002.
  • Bai, Z. S.; Wang, H. L.; Tu, S. T. Study of Air-Liquid Flow Patterns in Hydrocyclone Enhanced by Air Bubbles. Chem. Eng. Technol. 2009, 3(1), 55–63. DOI: 10.1002/ceat.200800518.
  • Strasser, W. Cyclone-Ejector Coupling and Optimisation. Progr. Comput. Fluid Dyn. 2010, 10(1), 19–31. DOI: 10.1504/PCFD.2010.030423.
  • Gay, J. C.; Triponey, G.; Bezard, C.; Schummer, P. Rotary Cyclone Will Improve Oily Water Treatment and Reduce Space Requirement/Weight on Offshore Platforms. SPE Offshore Europe; Aberdeen, United Kingdom, 1987. DOI: 10.2118/16571-MS
  • Zhao, L. X.; Li, F.; Ma, Z. Z.; Hu, Y. Q. Theoretical Analysis and Experimental Study of Dynamic Hydrocyclones. J. Energ. Resour. 2010, 132(4), 042901-1. DOI: 10.1115/1.4002997.
  • Ali-Zade, P.; Ustun, O.; Vardarli, F.; Sobolev, K. Development of an Electromagnetic Hydrocyclone Separator for Purification of Wastewater. Water Environ. J. 2008, 22(1), 11–16. DOI: 10.1111/j.1747-6593.2007.00075.x.
  • Gong, H. F.; Yu, B.; Dai, F.; Peng, Y.; Shao, J. Simulation on Performance of a Demulsification and Dewatering Device with Coupling Double Fields: Swirl Centrifugal Field and High-Voltage Electric Field. Sep. Purif. Technol. 2018, 207, 124–132. DOI: 10.1016/j.seppur.2018.06.049.
  • Lu, H.; Liu, Y. Q.; Cai, J. B.; Xu, X.; Xie, L. S.; Yang, Q.; Li, Y. X.; Zhu, K. Treatment of Offshore Oily Produced Water: Research and Application of a Novel Fibrous Coalescence Technique. J. Petrol. Sci. Eng. 2019, 178, 602–608. 2019.03.025. DOI: 10.1016/j.petrol.2019.03.025.
  • Wahi, R.; Chuah, L. A.; Choong, T. S. Y.; Ngaini, Z.; Nourouzi, M. M. Oil Removal from Aqueous State by Natural Fibrous Sorbent: An Overview. Sep. Purif. Technol. 2013, 113, 51–63. DOI: 10.1016/j.seppur.2013.04.015.
  • Yong, J. L.; Fang, Y.; Chen, F.; Huo, J. L.; Yang, Q.; Bian, H.; Du, G. Q.; Hou, X. Femtosecond Laser Ablated Durable Superhydrophobic PTFE Films with Micro-Though Holes for Oil/Water Separation: Separating Oil from Water and Corrosive Solutions. App. Surf. Sci. 2016, 389, 1145–1155. DOI: 10.1016/j.apsusc.2016.07.075.
  • Dong, Z. Q.; Wang, B. J.; Xu, Z. L.; Wei, Y. M.; Cheng, L. Recent Progress on Fabrication Technology of Functional Membranes for Oil/Water Separation. Chem. Ind. Eng. Prog. 2017, 36(1), 1–9. in Chinese. DOI: 10.16085/j.issn.1000-6613.2017.01.001.
  • Lu, H.; Liu, Y. Q.; Dai, P. Y.; Pan, Z. C.; Li, Y. D.; Wu, S. H.; Yang, Q. Process Intensification Technologies for Oil-Water Separation. Chem. Ind. Eng. Prog. 2020, 39(12), 4954–4962. in Chinese. DOI: 10.16085/j.issn.1000-6613.2020-0985.
  • Gutierrez, J. A.; Dyakowski, T.; Beck, M. S.; Williams, R. A. Using Electrical Impedance Tomography for Controlling Hydrocyclone Underflow Discharge. Powder Technol. 2000, 108(2–3), 180–184. DOI: 10.1016/S0967-0661(97)00233-5.
  • Van Vuuren, M. J. J.; Aldrich, C.; Auret, L. Detecting Changes in the Operational States of Hydrocyclones. Miner. Eng. 2011, 24(14), 1532–1544. DOI: 10.1016/j.mineng.2011.08.002.
  • Dubey, R. K.; Climent, E.; Banerjee, C.; Majumder, A. K. Performance Monitoring of a Hydrocyclone Based on Underflow Discharge Angle. Int. J. Miner. Process. 2016, 154, 41–52. DOI: 10.1016/j.minpro.2016.07.002.
  • Rashid, M. S. F. M.; Hamid, A. H. A.; Sheng, O. C.; Ghaffar, Z. A. An Experimental Investigation on the Effect of Various Swirl Atomizer Orifice Geometries on the Air Core Diameter. Appl. Mech. Mater. 2012, 225, 32–37. https://www.scientific.net/AMM.225.32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.