257
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Polysaccharide Hydrogels for Controlling the Nutrient Release

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 276-288 | Received 14 Jun 2023, Accepted 03 Oct 2023, Published online: 18 Oct 2023

REFERENCES

  • Havard Business News, Global Demand for Food is Rising. Can We Meet It?, (2016). https://hbr.org/2016/04/global-demand-for-food-is-rising-can-we-meet-it (accessed May 2 2023).
  • National Greographic, Dead Zone. (2022). https://education.nationalgeographic.org/resource/dead-zone/ (accessed May 2 2023).
  • Wurtsbaugh, W.; Paerl, H.; Dodds, W. Nutrients, Eutrophication and Harmful Algal Blooms Along the Freshwater to Marine Continuum. Wiley Interdiscip. Rev. Water. 2019, 6(5), e1373. DOI: 10.1002/wat2.1373.
  • Heisler, J. P.; Glibert, P.; Burkholder, J.; Anderson, D.; Cochlan, W.; Dennison, W.; Dortch, Q.; Gobler, C.; Heil, C.; Humphries, E., et al. Eutrophication and Harmful Algal Blooms: A Scientific Consensus. Harmful Algae. 2008, 8(1), 3–13. DOI: 10.1016/j.hal.2008.08.006.
  • Essawy, H. A.; Ghazy, M. B.; Abd El-Hai, F.; Mohamed, M. F. Superabsorbent Hydrogels via Graft Polymerization of Acrylic Acid from Chitosan-Cellulose Hybrid and Their Potential in Controlled Release of Soil Nutrients. Int. J. Biol. Macromol. 2016, 89, 144–151. DOI: 10.1016/j.ijbiomac.2016.04.071.
  • Maitra, J.; Singh, N. Swelling Behavior of Starch Chitosan Polymeric Blend, Adv. Polym. Sci. Technol. Int. J. 2014, 4, 22–27.
  • Duan, Q.; Jiang, S.; Chen, F.; Li, Z.; Ma, L.; Song, Y.; Yu, X.; Chen, Y.; Liu, H.; Yu, L. F. Fabrication, Evaluation Methodologies and Models of Slow-Release Fertilizers: A Review. Ind. Crops Prod. 2023, 192, 116075. DOI: 10.1016/j.indcrop.2022.116075.
  • Li, G.; Fu, P.; Cheng, G.; Lu, W.; Lu, D. Delaying Application Time of Slow-Release Fertilizer Increases Soil Rhizoshere Nitrogen Content, Root Activity, and Grain Yield of Spring Maize. Corp. J. 2022, 10(6), 1798–1806. DOI: 10.1016/j.cj.2022.04.014.
  • Sim, D. H. H.; Tan, I. A. W.; Lim, L. L. P.; Hameed, B. H. Encapsulated Biochar-Based Sustained Release Fertilizer for Precision Agriculture: A Review. J. Clean. Prod. 2021, 303, 127018. DOI: 10.1016/j.jclepro.2021.127018.
  • Sabbagh, F.; Kiarostami, K.; Khatir, N. M. A Comparative Study on the Clays Incorporated with Acrylamide-Based Hydrogels. J. Adv. Appl. Nanobio. Tech. 2021, 2(4), 15–23. DOI: 10.47277/AANBT/2(4)23.
  • Zhao, C.; Liu, G.; Tan, Q.; Gao, M.; Chen, G.; Huang, X.; Xu, X.; Li, L.; Wang, J.; Zhang, Y., et al. Polysaccride-Based Biopolymer Hydrogels for Heavy Metal Detection and Absorption. J. Adv. Res. 2023, 44, 53–70. DOI: 10.1016/j.jare.2022.04.005.
  • Sabbagh, F.; Muhamad, I. I.; Pa’e, N.; Hashim, Z. Strategies in Improving Properties of Cellulose-Based Hydrogels for Smart Applications. In Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series; Mondal, M., (Ed.); Springer: Cham, 2018; pp. 1–22. DOI: 10.1007/978-3-319-76573-0_30-1.
  • Shen, Y.; Wang, H.; Liu, Z.; Li, W.; Liu, Y.; Li, J.; Wei, H.; Han, H. Fabrication of a Water-Retaining, Slow-Release Fertilizer Based on Nanocomposite Double-Network Hydrogels via Ion-Crosslinking and Free Radical Polymerization. J. Ind. Eng. Chem. 2021, 93, 375–382. DOI: 10.1016/j.jiec.2020.10.014.
  • Chen, J.; Lü, S.; Zhang, Z.; Zhao, X.; Li, X.; Ning, P.; Liu, M. Environmentally Friendly Fertilizers: A Review of Materials Used and Their Effects on the Environment. Sci. Total Environ. 2018, 613-614, 829–839. DOI: 10.1016/j.scitotenv.2017.09.186.
  • Antunes, J. C.; Domingues, J. M.; Miranda, C. S.; Silva, A. F. G.; Homem, N. C.; Amorim, M. T. P.; Felgueiras, H. P. Bioactivity of Chitosan-Based Particles Loaded with Plant-Derived Extracts for Biomedical Applications: Emphasis on Antimicrobial Fiber-Based Systems. Mar. Drugs. 2021, 19(7), 359. DOI: 10.3390/md19070359.
  • Nangia, S.; Warkar, S.; Katyal, D. A Review on Environmental Applications of Chitosan Biopolymeric Hydrogel Based Composites. J. Macromol. Sci. A. 2018, 55(11–12), 747–763. DOI: 10.1080/10601325.2018.1526041.
  • Michalik, R.; Wandzik, I. A Mini-Review on Chitosan-Based Hydrogels with Potential for Sustainable Agricultural Applications. Polymers. 2020, 12(10), 2425. DOI: 10.3390/polym12102425.
  • Safarzadeh Kozani, P.; Safarzadeh Kozani, P.; Hamidi, M.; Valentine Okoro, O.; Eskandani, M.; Jaymand, M. Polysaccharide-Based Hydrogels: Properties, Advantages, Challenges, and Optimization Methods for Applications in Regenerative Medicine. Int. J. Polym. Mater. Polym. 2022, 71(17), 1319–1333. DOI: 10.1080/00914037.2021.1962876.
  • Yadav, H.; Agrawal, R.; Panday, A.; Patel, J.; Maiti, S. Polysaccharide-Silicate Composite Hydrogels: Review on Synthesis and Drug Delivery Credentials. J. Drug Deliv. Sci. Technol. 2022, 74, 103573. DOI: 10.1016/j.jddst.2022.103573.
  • Hu, X.; Zhang, L.; Yan, L.; Tang, L. Recent Advances in Polysaccharide-Based Physical Hydrogels and Their Potential Applications for Biomedical and Wastewater Treatment. Macromol. Biosci. 2022, 22, 2200153. DOI: 10.1002/mabi.202200153.
  • Myrick, J. M.; Vendra, V. K.; Krishnan, S. Sefl-Assembled Polysaccharide Nanostructures for Controlled Release Applications. Nanotechnol. Rev. 2014, 3(4), 319–346. DOI: 10.1515/ntrev-2012-0050.
  • Fragal, E. H.; Fragal, V. H.; Silva, E. P.; Paulino, A. T.; da Silva Filho, E. C.; Mauricio, M. R.; Silva, R.; Rubira, A. F.; Muniz, E. C. Magnetic-Responsive Polysaccharide Hydrogels as Smart Biomaterials: Synthesis, Properties, and Biomedical Applications. Carbohydr. Polym. 2022, 292, 119665. DOI: 10.1016/j.carbpol.2022.119665.
  • Manzoor, A.; Dar, A. H.; Pandey, V. K.; Shams, R.; Khan, S.; Panesar, P. S.; Kennedy, J. F.; Fayaz, U.; Khan, S. A. Recent Insights into Polysaccharide-Based Hydrogels and Their Potential Applications in Food Sector: A Review. Int. J. Biol. Macromol. 2022, 213, 987–1006. DOI: 10.1016/j.ijbiomac.2022.06.044.
  • Ghiorghita, C. A.; Dinu, M. V.; Lazar, M. M.; Dragan, E. S. Polysaccharide-Based Composite Hydrogels as Sustainable Materials for Removal of Pollutants from Wastewater. Molecules. 2022, 27, 8574. DOI: 10.3390/molecules27238574.
  • Dattilo, M.; Patitucci, F.; Prete, S.; Parisi, O. I.; Puoci, F. Polysaccharide-Based Hydrogels and Their Application as Drug Delivery Systems in Cancer Treatment: A Review. J. Funct. Biomater. 2023, 14, 55. DOI: 10.3390/jfb14020055.
  • Myrick, J. M.; Vendra, V. K.; Le, N.; Sexton, F. A.; Krishnan, S. Controlled Release of Glucose from Orally Delivered Temperature- and PH-Responsive Polysaccharide Microparticle Dispersions. Ind. Eng. Chem. Res. 2019, 58(46), 21056–21069. DOI: 10.1021/acs.iecr.9b02402.
  • Bortolin, A.; Aouada, F. A.; Mattoso, L. H.; Ribeiro, C. Nanocomposite PAAm/Methyl Cellulose/Montmorillonite Hydrogel: Evidence of Synergistic Effects for the Slow Release of Fertilizers. J. AGR. FOOD. CHEM. 2013, 61(31), 7431–7439. DOI: 10.1021/jf401273n.
  • Swantomo, D.; Rochmadi; Basuki, K. T.; Sudiyo, R. Synthesis of Smart Biodegradable Hydrogels Cellulose-Acrylamide Using Radiation as Controlled Release Fertilizers. Adv. Mater. Res. 2014, 896, 296–299. DOI: 10.4028/www.scientific.net/AMR.896.296.
  • Wu, Y.; Brickler, C.; Li, S.; Chen, G. Synthesis of Microwave-Mediated Biochar-Hydrogel Composites for Enhanced Water Absorbency and Nitrogen Release. Polym. Test. 2021, 93, 106996. DOI: 10.1016/j.polymertesting.2020.106996.
  • Mohammadi-Khoo, S.; Moghadam, P. N.; Fareghi, A. R.; Movagharnezhad, N. Synthesis of a Cellulose-Based Hydrogel Network: Characterization and Study of Urea Fertilizer Slow Release. J. Appl. Polym. Sci. 2016, 133(5), 42935. DOI: 10.1002/app.42935.
  • Durpekova, S.; Di Martino, A.; Dusankova, M.; Drohsler, P.; Sedlarik, V. Biopolymer Hydrogel Based on Acid Whey and Cellulose Derivatives for Enhancement Water Retention Capacity of Soil and Slow Release of Fertilizers. Polymers. 2021, 13(19), 3274. DOI: 10.3390/polym13193274.
  • Rizwan, M.; Gilani, S. R.; Durrani, A. I.; Naseem, S. Kinetic Model Studies of Controlled Nutrient Release and Swelling Behavior of Combo Hydrogel Using Acer Platanoides Cellulose. J. Taiwan Inst. Chem. Eng. 2022, 131, 104137. DOI: 10.1016/j.jtice.2021.11.004.
  • Huey, C. E.; Zaireen Nisa Yahya, W.; Mansor, N. Allicin Incorporation as Urease Inhibitor in a Chitosan/Starch Based Biopolymer for Fertilizer Application, Mater. Today: Proc. 2019, 16, 2187–2196. DOI: 10.1016/j.matpr.2019.06.109.
  • Sarmah, D.; Karak, N. Biodegradable Superabsorbent Hydrogel for Water Holding in Soil and Controlled-Release Fertilizer. J. Appl. Polym. Sci. 2020, 137(13), 48495. DOI: 10.1002/app.48495.
  • Jungsinyatam, P.; Suwanakood, P.; Saengsuwan, S. Multicomponent Biodegradable Hydrogels Based on Natural Biopolymers as Environmentally Coating Membrane for Slow-Release Fertilizers: Effect of Crosslinker Type. Sci. Total Environ. 2022, 843, 157050. DOI: 10.1016/j.scitotenv.2022.157050.
  • Khan, E.; Ozaltin, K.; Bernal-Ballen, A.; Di Martino, A. Renewable Mixed Hydrogels Based on Polysaccharide and Protein for Release of Agrochemicals and Soil Conditioning. Sustainability. 2021, 13(18), 10439. DOI: 10.3390/su131810439.
  • Hnoosong, W.; Rungcharoenthong, P.; Sangjan, S. Preparation and Properties of Urea Slow-Release Fertilizer Hydrogel by Sodium Alginate-Gelatin Biopolymer. Key Eng. Mater. 2021, 889, 98–103. DOI: 10.4028/www.scientific.net/KEM.889.98.
  • Yuan, J.; Ma, Y.; Yu, F.; Sun, Y.; Dai, X.; Ma, J. Simultaneous in situ Nutrient Recovery and Sustainable Wastewater Purification Based on Metal Anion-And Cation-Targeted Selective Adsorbents. J. Hazard. Mater. 2020, 382, 121039. DOI: 10.1016/j.jhazmat.2019.121039.
  • Pourjavadi, A.; Doulabi, M.; Soleyman, R.; Sharif, S.; Eghtesadi, S. A. Synthesis and Characterization of a Novel (Salep Phosphate)-Based Hydrogel as a Carrier Matrix for Fertilizer Release. React. Funct. Polym. 2012, 72, 667–672. DOI: 10.1016/j.reactfunctpolym.2012.06.010.
  • Calcagnile, P.; Sibillano, T.; Giannini, C.; Sannino, A.; Demitri, C. Biodegradable Poly(lactic Acid)/cellulose-Based Superabsorbent Hydrogel Composite Material as Water and Fertilizer Reservoir in Agricultural Applications. J. Appl. Polym. Sci. 2019, 136(21), 47546. DOI: 10.1002/app.47546.
  • Perez Bravo, J. J.; Francois, N. J. Low Cost and Eco-Friendly Polymeric Matrix Prepared by Physical Crosslinking as Potential Potassium Nitrate Release System. J. Appl. Polym. Sci. 2022, 139(9), 51705. DOI: 10.1002/app.51705.
  • Guo, Y.; Guo, R.; Shi, X.; Lian, S.; Zhou, Q.; Chen, Y.; Liu, W.; Li, W. Synthesis of Cellulose-Based Superabsorbent Hydrogel with High Salt Tolerance for Soil Conditioning. Int. J. Biol. Macromol. 2022, 209, 1169–1178. DOI: 10.1016/j.ijbiomac.2022.04.039.
  • Zhang, L.; Guan, Y. Microbial Investigations of New Hydrogel-Biochar Composites as Soil Amendments for Simultaneous Nitrogen-Use Improvement and Heavy Metal Immobilization. J. Hazard. Mater. 2022, 424, 127154. DOI: 10.1016/j.jhazmat.2021.127154.
  • Hu, Z.-Y.; Chen, G.; Yi, S.-H.; Wang, Y.; Liu, Q.; Wang, R. Multifunctional Porous Hydrogel with Nutrient Controlled-Release and Excellent Biodegradation. J. Environ. Chem. Eng. 2021, 9, 106146. DOI: 10.1016/j.jece.2021.106146.
  • Zonatto, F.; Muniz, E. C.; Tambourgi, E. B.; Paulino, A. T. Adsorption and Controlled Release of Potassium, Phosphate and Ammonia from Modified Arabic Gum-Based Hydrogel. Int. J. Biol. Macromol. 2017, 105, 363–369. DOI: 10.1016/j.ijbiomac.2017.07.051.
  • Zhang, Y.; Tian, X.; Zhang, Q.; Xie, H.; Wang, B.; Feng, Y. Hydrochar-Embedded Carboxymethyl Cellulose-G-Poly(acrylic Acid) Hydrogel as Stable Soil Water Retention and Nutrient Release Agent for Plant Growth. J. Bioresources Bioprod. 2022, 7, 116–127. DOI: 10.1016/j.jobab.2022.03.003.
  • Rodrigues Sousa, H.; Sá Lima, I.; Matheus, L. N.; Santos Silva, L. ;.; Maria, A.; Silva, S. N.; Pereira, A.; de Araújo, F.; Felippe Ratke, R.; Anteveli Osajima, J., et al. Innovative Hydrogels Made from Babassu Mesocarp for Technological Application in Agriculture. J. Mol. Liq. 2023, 376, 121463. DOI: 10.1016/j.molliq.2023.121463.
  • Jóźwiak, T.; Filipkowska, U.; Szymczyk, P.; Kuczajowska-Zadrożna, M.; Mielcarek, A. The Use of Crosslinked Chitosan Beads for Nutrients (Nitrate and Orthophosphate) Removal from a Mixture of P-PO4, N-NO2 and N-NO3. Int. J. Biol. Macromol. 2017, 104, 1280–1293. DOI: 10.1016/j.ijbiomac.2017.07.011.
  • Basta, A. H.; Lotfy, V. F.; Eldewany, C. Comparison of Copper-Crosslinked Carboxymethyl Cellulose versus Biopolymer-Based Hydrogels for Controlled Release of Fertilizer. Polym. Plast. Technol. Mater. 2021, 60, 1884–1897. DOI: 10.1080/25740881.2021.1934017.
  • Jóźwiak, T.; Filipkowska, U.; Szymczyk, P.; Mielcarek, A. Sorption of Nutrients (Orthophosphate, Nitrate III and V) in an Equimolar Mixture of P–PO4, N–NO2 and N–NO3 Using Chitosan. Arab J. Chem. 2019, 12, 4104–4117. DOI: 10.1016/j.arabjc.2016.04.008.
  • Ako, K. Influence of Osmotic and Weight Pressure on Water Release from Polysaccharide Ionic Gels, Carbohydr. Polym. 2017, 169, 376–384. DOI: 10.1016/j.carbpol.2017.04.062.
  • Elbarbary, A. M.; Ghobashy, M. M. Controlled Release Fertilizers Using Superabsorbent Hydrogel Prepared by Gamma Radiation, Radiochim. Acta. Radiochim. Acta. 2017, 105(10), 865–876. DOI: 10.1515/ract-2016-2679.
  • Rop, K.; Karuku, G. N.; Mbui, D.; Michira, I.; Njomo, N. Formulation of Slow Release NPK Fertilizer (Cellulose-Graft-Poly(acrylamide)/nano-Hydroxyapatite/soluble Fertilizer) Composite and Evaluating Its N Mineralization Potential. Ann. Agric. Sci. 2018, 63, 163–172. DOI: 10.1016/j.aoas.2018.11.001.
  • Andani, G.; Helmiyati, H. Synthesis and Characterization of Hydrogel NaCmc-G-Poly(aa-Co-AAm) Modified by Rice Husk Ash as Macronutrient NPK Slow-Release Fertilizer Superabsorbent, IOP Conf. Ser.: Mater. Sci. Eng. 2020, 763(1), 012005. DOI: 10.1088/1757-899X/763/1/012005.
  • Bauli, C. R.; Lima, G. F.; de Souza, A. G.; Ferreira, R. R.; Rosa, D. S. Eco-Friendly Carboxymethyl Cellulose Hydrogels Filled with Nanocellulose or Nanoclays for Agriculture Applications as Soil Conditioning and Nutrient Carrier and Their Impact on Cucumber Growing. Colloids Surf. A Physicochem. Eng. Asp. 2021, 623, 126771. DOI: 10.1016/j.colsurfa.2021.126771.
  • Skrzypczak, D.; Gil, F.; Izydorczyk, G.; Mikula, K.; Gersz, A.; Hoppe, V.; Chojnacka, K.; Witek-Krowiak, A. Innovative Bio-Waste-Based Multilayer Hydrogel Fertilizers as a New Solution for Precision Agriculture. J. Environ. Manage. 2022, 321, 116002. DOI: 10.1016/j.jenvman.2022.116002.
  • Skrzypczak, D.; Mikula, K.; Izydorczyk, G.; Dawiec-Liśniewska, A.; Moustakas, K.; Chojnacka, K.; Witek-Krowiak, A. New Directions for Agricultural Wastes Valorization as Hydrogel Biocomposite Fertilizers. J. Environ. Manage. 2021, 299, 113480. DOI: 10.1016/j.jenvman.2021.113480.
  • Wang, W.; Wang, A. Synthesis, Swelling Behaviors, and Slow-Release Characteristics of a Guar Gum-G-Poly(sodium Acrylate)/Sodium Humate Superabsorbent. J. Appl. Polym. Sci. 2009, 112(4), 2102–2111. DOI: 10.1002/app.29620.
  • Womack, N.; Piccoli, I.; Camarotto, C.; Squartini, A.; Guerrini, G.; Gross, S.; Maggini, M.; Cabrera, M.; Morari, F. Hydrogel Application for Improving Soil Pore Network in Agroecosystems. Preliminary Results on Three Different Soils. Catena. 2022, 208, 105759. DOI: 10.1016/j.catena.2021.105759.
  • Kongklom, N.; Chuensangjun, C.; Chisti, Y.; Sirisansaneeyakul, S. Improved Keeping Quality of Dendrobium “Bom” Orchids Using Nutrients Entrapped in a Biodegradable Hydrogel. Sci. Hortic. 2018, 234, 184–192. DOI: 10.1016/j.scienta.2018.02.031.
  • Elmas, A.; Akyuz, G.; Bergal, A.; Andac, M.; Andac, O. Mathematical Modelling of Drug Release. Res. Eng. Struct. Mater. 2020, 6(4), 327–350. DOI: 10.1016/B978-0-08-100092-2.00005-9.
  • Chime, S.; Onunkwo, G.; Onyishi, I. Kinetics and Mechanisms of Drug Release from Swellable and Non Swellable Matrices: A Review. Res. J. Pharm. Biol. Chem. Sci. 2013, 4, 97–103.
  • Sempeho, S. I.; Kim, H. T.; Mubofu, E.; Hilonga, A. Meticulous Overview on the Controlled Release Fertilizers. Adv. Chem. 2014, 2014, 363071. DOI: 10.1155/2014/363071.
  • Siepmann, J.; Peppas, N. A. Modeling of Drug Release from Delivery Systems Based on Hydroxypropyl Methylcellulose (HPMC. Adv. Drug Deliv. Rev. 2012, 64, 163–174. DOI: 10.1016/j.addr.2012.09.028.
  • Barzegar-Jalali, M. Kinetic Analysis of Drug Release from Nanoparticles. J. Pharm. Pharm. Sci. 2008, 11(1), 167–177. DOI: 10.18433/j3d59t.
  • Ata, S.; Rasool, A.; Islam, A.; Bibi, I.; Rizwan, M.; Azeem, M. K.; Qureshi, A. U. R.; Iqbal, M. Loading of Cefixime to pH sensitive Chitosan Based Hydrogel and Investigation of Controlled Release Kinetics. Int. J. Biol. Macromol. 2020, 155, 1236–1244. DOI: 10.1016/j.ijbiomac.2019.11.091.
  • Korsmeyer, R. W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N. A. Mechanisms of Solute Release from Porous Hydrophilic Polymers. Int. J. Pharm. 1983, 15, 25–35. DOI: 10.1016/0378-5173(83)90064-9.
  • Chen, F.; Miao, C.; Duan, Q.; Jiang, S.; Liu, H.; Ma, L.; Li, Z.; Bao, X.; Lan, B.; Chen, L., et al. Developing Slow Release Fertilizer Through in-Situ Radiation-Synthesis of Urea-Embedded Starch-Based Hydrogels. Ind. Crops Prod. 2023, 191, 115971. DOI: 10.1016/j.indcrop.2022.115971.
  • Bao, X.; Yu, L.; Shen, S.; Simon, G. P.; Liu, H.; Chen, L. How Rheological Behaviors of Concentrated Starch Affect Graft Copolymerization of Acrylamide and Resultant Hydrogel, Carbohydr. Polym. 2019, 219(215), 395–404. DOI: 10.1016/j.carbpol.2019.05.034.
  • Wei, X.; Bao, X.; Yu, L.; Liu, H.; Lu, K.; Chen, L.; Bai, L.; Zhou, X.; Li, Z.; Li, W. Correlation Between Gel Strength of Starch-Based Hydrogel and Slow Release Behavior of Its Embedded Urea. J Polym. Environ. 2020, 28(3), 863–870. DOI: 10.1007/s10924-020-01653-7.
  • Li, P.; Jin, Z.; Fang, Z.; Yu, G. A Single-Site Iron Catalyst with Preoccupied Active Centers That Achieves Selective Ammonia Electrosynthesis from Nitrate. Energy Environ. Sci. 2021, 14(6), 3522–3531. DOI: 10.1039/D1EE00545F.
  • Fan, Y.; Wang, X.; Qian, X.; Dixit, A.; Herman, B.; Lei, Y.; McCutcheon, J.; Li, B. Enhancing the Understanding of Soil Nitrogen Fate Using a 3D-Electrospray Sensor Roll Casted with a Thin-Layer Hydrogel. Environ. Sci. Technol. 2022, 56(8), 4905–4914. DOI: 10.1021/acs.est.1c05661.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.