163
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Genetic Variation for Heat Tolerance in Primitive Cultivated Subspecies of Triticum turgidum L.

, , &
Pages 565-580 | Received 16 Dec 2014, Accepted 08 Jun 2015, Published online: 14 Aug 2015

REFERENCES

  • Ali, M. B., A. M. H. Ibrahim, D. B. Hays, Z. Ristic, and J. Fu. 2010. Wild tetraploid wheat (Triticum turgidum L.) response to heat stress. Journal of Crop Improvement 24:228–243.
  • Ali, M. B., A. M. H. Ibrahim, S. Malla, J. Rudd, and D. B. Hays. 2013. Family-based QTL mapping of heat stress tolerance in primitive tetraploid wheat (Triticum turgidum L.). Euphytica 192:189–203.
  • Asseng, S., I. A. N. Foster, and N. C. Turner. 2011. The impact of temperature variability on wheat yields. Global Change Biology 17:997–1012.
  • Berry, J., and O. Björkman. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annual Review Plant Physiology. 31:491–543.
  • Brisson, N., P. Gate, D. Gouache, G. Charmet, F. X. Oury, and F. Huard. 2010. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Research 119:201–212.
  • Budak, H., M. Kantar, and K. K. Yucebilgili. 2013. Drought tolerance in modern and wild wheat. Science World Journal 2013:16.
  • Curtis, B. 2002. Wheat in the world. Bread wheat: Improvement and production. FAO Plant Production and Protection Series 30:1–17.
  • Dolferus, R., N. Powell, X. Ji, R. Ravash, J. Edlington, S. Oliver, V. Joost, and B. Dongen. 2013. The physiology of reproductive-stage abiotic stress tolerance in cereals. In Molecular Stress Physiology of Plants, ed. G.R. Rout and A. B. Das, 193–216. New Delhi, India: Springer.
  • FAO. 2012. Feeding the World: Trends in the crop sector. In FAO Statistical Yearbook 2012 World Food and Agriculture, 182–197. Rome, Italy: FAO.
  • Fischer, R., and R. Maurer. 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agriculture Research 29:897–912.
  • Fu, J., I. Momcilovic, T. E. Clemente, N. Nersesian, H. N. Trick, and Z. Ristic. 2008. Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress. Plant Molecular Biology 68:277–288.
  • Fu, J., and Z. Ristic. 2010. Analysis of transgenic wheat (Triticum aestivum L.) harboring a maize (Zea mays L.) gene for plastid EF-Tu: segregation pattern, expression, and effects of the transgene. Plant Molecular Biology 73:339–347.
  • Gill, B. S., B. Friebe, W. J. Raupp, D. L. Wilson, T. S. Cox, R.G. Sears, G.L. Brown-Guedira, and A. K. Fritz. 2006. Wheat Genetics Resource Center: the first 25 years. Advances in Agronomy 85:73–135.
  • Hansen, J., M. Sato, and R. Ruedy. 2012. Perception of climate change. Proceedings National Academy of Science 109:14726–14727.
  • Hays, D. B., J. H. Do, R. E. Mason, G. Morgan, and S. A. Finlayson, 2007. Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Science 172:1113–1123.
  • Ibrahim, A. M. H., and J. S. Quick. 2001. Heritability of heat tolerance in winter and spring wheat. Crop Science 41:1401–1405.
  • Large, E. C. 1954. Growth stages in cereals: illustration of the Feekes scale. Plant Pathology 3:128–129.
  • Larkindale, J., M. Mishkind, and E. Vierling. 2005. Plant responses to high temperature. In Plant Abiotic Stress, edited by M.A. Jenks and P.M. Hasegawa, 100–144. Oxford, UK: Blackwell Publishing,
  • Levitt, J. 1980. Responses of plants to environmental stresses. In Chilling, freezing, and high temperature stresses, vol. I., 2nd ed. New York, NY: Academic Press.
  • Lillemo, M., M. van Ginkel, R. M. Trethowan, E. Hernandez, and J. Crossa. 2005. Differential adaptation of CIMMYT bread wheat to global high temperature environments. Crop Science 45:2443–2453.
  • Lobell, D. B., J. I. Ortiz-Monasterio, G. P. Asner, P. A. Matson, R. L. Naylor, and W. P. Falcon. 2005. Analysis of wheat yield and climatic trends in Mexico. Field Crops Research 94:250–256.
  • Mujeeb-Kazi, A. 2003. Wheat improvement facilitated by novel genetic diversity and in vitro technology. Plant Cell Tissue Organ Culture 13:179–210.
  • Mullarkey, M., and P. Jones. 2000. Isolation and analysis of thermotolerant mutants of wheat. Journal of Experimental Botany 51:139–146.
  • Paulsen, G. 1994. High temperature response of crop plants. In Physiology and Determination of Crop yield, edited by K. J. Boote, I. M. Bennett, T. R. Sinclair, and G. Paulsen, 365–389. Madison, WI: American Society of Agronomy.
  • Pradhan, G. P., P. V. V. Prasad, A. K. Fritz, M. B. Kirkham, and B. S. Gill. 2012. High temperature tolerance in Aegilops species and its potential transfer to wheat. Crop Science 52:292–304.
  • Prasad, P. V. V., and M. Djanaguiraman. 2014. Response of floret fertility and individual grain weight of wheat to high temperature stress: sensitive stages and thresholds for temperature and duration. Functional Plant Biology 41:1261–1269.
  • Prasad, P. V. V., S. R. Pisipati, Z. Ristic, U. Bukovnik, and A. K. Fritz. 2008a. Impact of nighttime temperature on physiology and growth of spring wheat. Crop Science 48:2372–2380.
  • Prasad, P. V., S. Staggenborg, and Z. Ristic. 2008b. Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In Response of crops to limited water: Understanding and modeling water stress effects on plant growth processes, 301–355. Madison, WI: American Society of Agronomy.
  • Redden, R. J., J. L. Hatfield, P. V. V. Prasad, A. W. Ebert, S. S. Yadav, and G. J. O’Leary. 2014. Temperature, climate change, and global food security. In Temperature and Plant Development, 181–202. Ames, IA: John Wiley & Sons.
  • Ristic, Z., U. Bukovnik, I. Momčilović, J. Fu, and P. V. V. Prasad. 2008a. Heat-induced accumulation of chloroplast protein synthesis elongation factor, EF-Tu, in winter wheat. Journal of Plant Physiology 165:192–202.
  • Ristic Z., U. Bukovnik, P. V. V., Prasad, and M. West. 2008b. A model for prediction of heat stability of photosynthetic membranes. Crop Science 48:1513–1522.
  • Sakata, T., T. Oshino, S. Miura, M. Tomabechi, Y. Tsunaga, N. Higashitani, Y. Miyazawa, H. Takahashi, M. Watanabe, and A. Higashitani. 2010. Auxins reverse plant male sterility caused by high temperatures. Proceedings National Academy of Science 107:8569–8574.
  • Semenov, M. A. 2007. Development of high-resolution UKCIP02-based climate change scenarios in the UK. Agriculture Forest Meteorology 144:127–138.
  • Semenov, M. A., and N. G. Halford. 2009. Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. Journal of Experimental Botany 60:2791–2804.
  • Slafer, G., and H. Rawson. 1994. Sensitivity of wheat phasic development to major environmental factors: a re-examination of some assumptions made by physiologists and modellers. Functional Plant Biology 21:393–426.
  • Stone, P., and M. Nicolas. 1994. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Functional Plant Biology 21:887–900.
  • Trethowan, R.M., and A. Mujeeb-Kazi. 2008. Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Science 48:1255–1265.
  • You, L., M. W. Rosegrant, S. Wood, and D. Sun. 2009. Impact of growing season temperature on wheat productivity in China. Agriculture Forest Meteorology 149:1009–1014.
  • Zaharieva, M., N. Ayana, A. Hakimi, S. Misra, and P. Monneveux. 2010. Cultivated emmer wheat (Triticum dicoccon Schrank), an old crop with promising future: a review. Genetic Resource and Crop Evolution 57:937–962.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.