229
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Development and Molecular Characterization of Wheat-Aegilops peregrina Introgression Lines with Resistance to Leaf Rust and Stripe Rust

, , &
Pages 59-70 | Received 23 Jun 2017, Accepted 25 Oct 2017, Published online: 13 Dec 2017

References

  • Aghaee, S. M., M. Ferrahi, S. Singh, H. Singh, B. Friebe, B. S. Gill, and H. S. Dhaliwal. 2002. PhI-induced transfer of leaf rust and stripe rust-resistant genes from Aegilops speltoides and Ae. geniculata to bread wheat. Euphytica 127:377–82.
  • Autrique, E., R. P. Singh, S. D. Tanksley, and M. E. Sorrells. 1995. Molecular markers for four leaf rust resistance genes introgressed into wheat from wild relatives. Genome 38:75–83.
  • Berloo, R. V. 2008. GGT 2.0: Versatile software for visualization and analysis of genetic data. Journal of Heredity 99:232–36.
  • Brown, S. M., A. K. Szewc-McFadden, and S. Kresovich. 1996. Development and application of simple sequence repeat (SSR) loci for plant genome analysis. In Methods of genome analysis in plants, Ed. P. P. Jauhar, 147–62. Florida: CRC Press Inc.
  • Chen, P. D., H. Tsujimoto, and B. S. Gill. 1994. Transfer of PhI genes promoting homoeologous pairing from Triticum speltoides to common wheat. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik 88:97–101.
  • Chhuneja, P., S. Kaur, and H. S. Dhaliwal. 2016. Introgression and Eexploitation of biotic stress tolerance from related wild species in wheat cultivars. In Molecular Breeding for Sustainable Crop Improvement, Sustainable Development and Biodiversity. Sustainable Development and Biodiversity, Ed. V. R. Rajpal, et al., 11th edn ed., 269–324. Switzerland: Springer International Publishing.
  • Draz, I. S., M. S. Abou-Elseoud, A.-E. M. Kamara, O. Alaa-Eldein, and A. El-Bebany. 2015. Screening of wheat genotypes for leaf rust resistance along with grain yield. Annals Agricultural Sciences 60 (1):29–39.
  • Eckardt, N. A. 2006. Identification of rust fungi avirulence elicitors. The Plant Cell 18:1–3.
  • Flor, H. H. 1971. Current status of the gene–For–Gene concept. Annual Reviews Phytopathol 9:275–96. doi:10.1146/annurev.py.09.090171.001423.
  • Huerta-Espino, J., V. Singh, S. Germán, B. D. McCallum, R. F. Park, W. Q. Chen, S. C. Bhardwaj, and H. Goyeau. 2011. Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 179:143–60.
  • Kaur, S., R. Dhillon, M. Saluja, J. Saini, D. Narang, and P. Chhuneja. 2014. Allelic variation in high molecular weight glutenin subunits loci in Ae. peregrina and its transfer to hexaploid wheat. Crop Improvement 41 (1):50–55.
  • Kihara, H. 1954. Considerations on the evolution and distribution of Aegilops species based on the analyser-method. Cytologia 19:336–57.
  • Kimber, G., and M. Feldman 1987. Wild wheats: An introduction. College of Agriculture, University of Missouri, Columbia MO, Special Report No. 353, 114–28.
  • Kuraparthy, V., P. Chhuneja, H. S. Dhaliwal, S. Kaur, R. L. Bowden, and B. S. Gill. 2007a. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik 114:1379–89.
  • Kuraparthy, V., S. Sood, P. Chhuneja, H. S. Dhaliwal, S. Kaur, R. L. Bowden, and B. S. Gill. 2007b. A cryptic wheat-Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Science 47:1995–2003.
  • Liu, D., Z. Xiang, L. Zhang, Y. Zheng, W. Yang, G. Chen, C. Wan, and H. Zhang. 2011. Transfer of stripe rust resistance from Aegilops variabilis to bread wheat. African Journal of Biotechnology 10:136–39.
  • Lukaszewski, A. J., B. Lapinski, and K. Rybka. 2005. Limitations of in situ hybridization with total genomic DNA in routine screening for alien introgressions in wheat. Cytogen Genome Researcher 109:373–77.
  • Marais, G. F., B. McCallum, and A. S. Marais. 2008. Wheat leaf rust resistance gene Lr59 derived from Aegilops peregrina. Plant Breeding 127:340–45.
  • McIntosh, R. A., J. Dubcovsky, W. J. Rogers, C. Morris, and X. C. Xia 2017. Catalogue of gene symbols for wheat. In KOMUGI–Integrated wheat science database. http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp.
  • McIntosh, R. A., C. R. Wellings, and R. F. Park. 1995. Wheat Rusts: An Atlas of Resistance Genes. CSIRO publications, East Melbourne, Australia.
  • Mujeeb-Kazi, A., A. G. Kazi, I. Dundas, A. Rasheed, F. Ogbonnaya, M. Kishii, D. Bonnett, R. R. C. Wang, S. Xu, P. Chen, T. Mahmood, H. Bux, and S. Farrakh. 2013. Genetic Diversity for Wheat Improvement as a Conduit to Food Security. In Advances in Agronomy, ed D. L. Sparks (Ed.), Vol. 122, 179–257. Burlington: Academic Press.
  • Peterson, R. F., A. B. Campbell, and A. E. Hannah. 1948. A diagnostic scale for estimating rust severity on leaves and stem of cereals. Canada Journal Researcher Sect C Botanic Sciences 26:496–500.
  • Qi, L. L., B. Echalier, S. Chao, G. R. Lazo, G. E. Butler, and O. D. Anderson. 2004. A chromosome bin map of 16000 expressed sequence tag loci and distribution of genes among the three genomes of polyploidy wheat. Genetics 168:701–12.
  • Riley, R., V. Chapman, and R. Johnson. 1968. Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217:383–84.
  • Röder, M. S., V. Korzun, K. Wendehake, J. Plaschke, M. H. Tixier, P. Leroy, and M. W. Ganal. 1998. A microsatellite map of wheat. Genetics 149:2007–23.
  • Saghai-Maroof, M. A., R. M. Biyashev, G. P. Yang, Q. Zhang, and R. W. Allard. 1994. Extraordinarily polymorphic microsatellite DNA in barley: Species diversity, chromosomal locations and population dynamics. Proceedings National Academic Sciences 91:5466–70.
  • Sears, E. R. 1956. The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symposium Biologic 9:1–22. ( Genetics in Plant Breeding).
  • Sears, E. R. 1981. Transfer of alien genetic material to wheat. In Wheat science today and tomorrow, Ed. L. T. Evans, and W. J. Peacock, 75–89. Cambridge, UK: Cambridge Univ. Press.
  • Somers, D. J., P. Isaac, and K. Edwards. 2004. A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical Applications Genetics 109:1105–14.
  • Spetsov, P., D. Mingeot, J. M. Jacquemin, K. Samardjieva, and E. Marinova. 1997. Transfer of powdery mildew resistance from Aegilops variabilis into bread wheat. Euphytica 93:49–54.
  • Yu, M. Q., and J. Jahier. 1992. Origin of Sv genome of Aegilops variabilis and utilization of the Sv as analyser of the S genome of the Aegilops species in the Sitopsis section. Plant Breeding 108:290–95.
  • Yu, M. Q., F. Person-Dedryver, and J. Jahier. 1990. Resistance to root-knot nematode, Meloidogyne naasi (Franklin), transferred from Aegilops variabilis to bread wheat. Agronomie 10:451–56.
  • Zhang, H., J. Jia, M. D. Gale, and K. M. Devos. 1998. Relationships between the chromosomes of Aegilops umbellulata and wheat. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik 96:69–75.
  • Zhang, H. B., and J. Dvorak. 1992. The genome origin and evolution of hexaploid Triticum crassum and Triticum syriacum determined from variation in repeated nucleotide sequences. Genome 35:806–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.