325
Views
19
CrossRef citations to date
0
Altmetric
Articles

Seed yield and oil quality as affected by Camelina cultivar and planting date

, , , , , & show all
Pages 202-222 | Received 17 Oct 2018, Accepted 03 Jan 2019, Published online: 22 Jan 2019

References

  • Abramovic, H., B. Butinar, and V. Nikolic. 2007. “Changes Occurring in Phenolic Content, Tocopherol Composition and Oxidative Stability of Camelina Sativa Oil during Storage.” Food Chemistry 104: 903–909. doi:10.1016/j.foodchem.2006.12.044.
  • Adamsen, F. J., and T. A. Coffelt. 2005. “Seeding Date Effects on Flowering, Seed Yield, and Oil Content of Rape and Crambe Cultivars.” Industrial Crops and Products 21: 293–307. doi:10.1016/j.indcrop.2004.04.012.
  • Aiken, R., D. Baltensperger, J. Krall, A. Pavlista, and J. Johnson. 2015. “Planting Methods Affect Emergence, Flowering and Yield of Spring Oilseed Crops in the U.S. Central High Plains.” Industrial Crops and Products 69: 273–277. doi:10.1016/j.indcrop.2015.02.025.
  • Berti, M., R. Gesch, C. Eynck, J. Anderson, and S. Cermak. 2016. “Camelina Uses, Genetics, Genomics, Production, and Management.” Industrial Crops and Products 94: 690–710. doi:10.1016/j.indcrop.2016.09.034.
  • Berti, M., D. Samarappuli, B. L. Johnson, and R. W. Gesch. 2017. “Integrating Winter Camelina into Maize and Soybean Cropping Systems.” Industrial Crops and Products 107: 595–601. doi:10.1016/j.indcrop.2017.06.014.
  • Berti, M., R. Wilckens, S. Fischer, A. Solis, and B. Johnson. 2011. “Seeding Date Influence on Camelina Seed Yield, Yield Components, and Oil Content in Chile.” Industrial Crops and Products 34: 1358–1365. doi:10.1016/j.indcrop.2010.12.008.
  • BP. 2017. BP Statistical Review of World Energy 2017. London: British Petroleum.
  • Budin, J., W. Breene, and D. Putnam. 1995. “Some Compositional Properties of Camelina (Camelina Sativa L. Crantz) Seeds and Oils.” Journal of the American Oil Chemists’ Society 72: 309–315. doi:10.1007/BF02541088.
  • Chen, C., A. Bekkerman, R. K. Afshar, and K. Neill. 2015. “Intensification of Dryland Cropping Systems for Bio-Feedstock Production: Evaluation of Agronomic and Economic Benefits of Camelina Sativa.” Industrial Crops and Products 71: 114–121. doi:10.1016/j.indcrop.2015.02.065.
  • Cherian, G. 2012. “Camelina Sativa in Poultry Diets: Opportunities and Challenges.” In Biofuel Co-Products as Livestock Feed, edited by H. P. S. Makkar, 303–310. Rome: Food and Agriculture Organization of the United Nations.
  • Eidhin, D. N., and D. O’Beirne. 2010. “Oxidative Stability and Acceptability of Camelina Oil Blended with Selected Fish Oils.” European Journal of Lipid Science and Technology 112: 878–886. doi:10.1002/ejlt.200900243.
  • Gesch, R. W. 2014. “Influence of Genotype and Sowing Date on Camelina Growth and Yield in the North Central US.” Industrial Crops and Products 54: 209–215. doi:10.1016/j.indcrop.2014.01.034.
  • Gilbertson, P. K., B. L. Johnson, M. T. Berti, and M. A. Halvorson. 2007. Seeding Date and Performance of Specialty Oilseeds in North Dakota. Issues in New Crops and New Uses, 105–110. Alexandria: ASHS Press.
  • Grings, E. E., A. Sackey, D. W. Brake, and G. A. Perry. 2015. "Comparison of Camelina Meal and Distiller’s Dried Grains with Solubles in Diet of Beef Replacement Heifers." South Dakota State Beef Report. USA: South Dakota State University.http://openprairie.sdstate.edu/sd_beefreport_2015/5
  • Gugel, R. K., and K. C. Falk. 2006. “Agronomic and Seed Quality Evaluation of Camelina Sativa in Western Canada.” Canadian Journal of Plant Science 86: 1047–1058. doi:10.4141/P04-081.
  • Guy, S. O., D. J. Wysocki, W. F. Schillinger, T. G. Chastain, R. S. Karow, K. Garland-Campbell, and I. C. Burke. 2014. “Camelina: Adaptation and Performance of Genotypes.” Field Crops Research 155: 224–232. doi:10.1016/j.fcr.2013.09.002.
  • Hatfield, J. L., and J. H. Prueger. 2015. “Temperature Extremes: Effect on Plant Growth and Development.” Weather and Climate Extremes 10: 4–10. doi:10.1016/j.wace.2015.08.001.
  • Jiang, Y., C. D. Caldwell, and K. C. Falk. 2014. “Camelina Seed Quality in Response to Applied Nitrogen, Genotype and Environment.” Canadian Journal of Plant Science 94: 971–980. doi:10.4141/cjps2013-396.
  • Kalita, D. J., I. Tarnavchyk, M. Sibi, B. R. Moser, D. C. Webster, and B. J. Chisholm. 2018. “Biobased Poly (Vinyl Ether)S Derived from Soybean Oil, Linseed Oil, and Camelina Oil: Synthesis, Characterization, and Properties of Crosslinked Networks and Surface Coatings.” Progress in Organic Coatings 125: 453–462. doi:10.1016/j.porgcoat.2018.09.033.
  • Keeney, A. J., and D. W. Nelson. 1982. “Nitrogen-Inorganic Forms.” In Methods of Soil Analysis. Part 2, edited by A. L. Page, 643–698. 2nd ed. Madison, WI: ASA.
  • Kemp, W. H. 2006. Biodiesel: Basics and Beyond, A Comprehensive Guide to Production and Use for the Home and Farm. Tamworth, ON: Aztext Press.
  • Keshavarz-Afshar, R., and C. Chen. 2015. “Intensification of Dryland Cropping Systems for Bio-Feedstock Production: Energy Analysis of Camelina.” Bioenergy Research 8: 1877–1884. doi:10.1007/s12155-015-9644-8.
  • Kim, N., Y. Li, and X. S. Sun. 2015. “Epoxidation of Camelina Sativa Oil and Peel Adhesion Properties.” Industrial Crops and Products 64: 1–8. doi:10.1016/j.indcrop.2014.10.025.
  • Kirkhus, B., A. R. Lundon, J. E. Haugen, G. Vogt, G. I. Borge, and B. I. Henriksen. 2013. “Effects of Environmental Factors on Edible Oil Quality of Organically Grown Camelina Sativa.” Journal of Agricultural and Food Chemistry 61: 3179–3185. doi:10.1021/jf304532u.
  • Knudsen, D., G. A. Peterson, and P. F. Pratt. 1982. “Lithium, sodium, and potassium.” In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, edited by A. L. Page, 225–246. 2nd ed. Madison, WI: ASA.
  • Kong, X., G. Liu, H. Qi, and J. M. Curtis. 2013. “Preparation and Characterization of High-Solid Polyurethane Coating Systems Based on Vegetable Oil Derived Polyols.” Progress in Organic Coatings 76: 1151–1160. doi:10.1016/j.porgcoat.2013.03.019.
  • Krohn, B. J., and M. Fripp. 2012. “A Life Cycle Assessment of Biodiesel Derived from the “Niche Filling” Energy Crop Camelina in the USA.” Applied Energy 92: 92–98. doi:10.1016/j.apenergy.2011.10.025.
  • Li, N., G. Qi, S. X. Sun, F. Xu, and D. Wang. 2015. “Adhesion Properties of Camelina Protein Fractions Isolated with Different Methods.” Industrial Crops and Products 69: 263–272. doi:10.1016/j.indcrop.2015.02.033.
  • Liu, H., S. Bean, and X. S. Sun. 2018. “Camelina Protein Adhesives Enhanced by Polyelectrolyte Interaction for Plywood Applications.” Industrial Crops and Products 124: 343–352. doi:10.1016/j.indcrop.2018.07.068.
  • Loehr, F. D. 2009. “Managing Beef Cow Production Using Gestational Oilseed Supplementation and Alternative Marketing Strategies for Mature Cull Cows.” Master Thesis, University of Wyoming.
  • Martinelli, T., and I. Galasso. 2011. “Phenological Growth Stages of Camelina Sativa according to the Extended BBCH Scale.” Annals of Applied Biology 158: 87–94. doi:10.1111/aab.2011.158.issue-1.
  • McVay, K. A., and Q. A. Khan. 2011. “Camelina Yield Response to Different Plant Populations under Dryland Conditions.” Agronomy Journal 103: 1265–1269. doi:10.2134/agronj2011.0057.
  • McVay, K. A., and P. F. Lamb. 2008. “Camelina Production in Montana.” Bull. MT200701AG. Montana State University. Accessed 30 October 2016. http://msuextension.org/publications/AgandNaturalResources/MT200701AG.pdf
  • Mehlich, A. 1984. “Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant.” Communications in Soil Science & Plant Analysis 15: 1409–1416. doi:10.1080/00103628409367568.
  • Mohammad, B. T., M. Al-Shannag, M. Alnaief, L. Singh, E. Singsaas, and M. Alkasrawi. 2018. “Production of Multiple Biofuels from Whole Camelina Material: A Renewable Energy Crop.” BioResources 13: 4870–4883.
  • Mohammed, Y. A., C. Chen, P. Lamb, and R. K. Afshar. 2017. “Agronomic Evaluation of Camelina (Camelina Sativa L. Crantz) Cultivars for Biodiesel Feedstock.” Bioenergy Research 10: 792–799. doi:10.1007/s12155-017-9840-9.
  • Morrison, M. J., and D. W. Stewart. 2002. “Heat Stress during Flowering in Summer Brassica.” Crop Science 42: 797–803. doi:10.2135/cropsci2002.7970.
  • NASS. 2016. “National Agricultural Statistical Services.” USDA. http://www.nass.usda.gov
  • Obour, A. K., C. Chen, H. Y. Sintim, K. McVay, P. Lamb, E. Obeng, Y. A. Mohammed, Q. Khan, R. K. Afshar, and V. D. Zheljazkov. 2018. “Camelina Sativa as a Fallow Replacement Crop in Wheat-Based Crop Production Systems in the US Great Plains.” Industrial Crops and Products 111: 22–29. doi:10.1016/j.indcrop.2017.10.001.
  • Obour, A. K., E. Obeng, Y. A. Mohammed, I. A. Ciampitti, T. P. Durrett, J. A. Aznar-Moreno, and C. Chen. 2017. “Camelina Seed Yield and Fatty Acids as Influenced by Genotype and Environment.” Agronomy Journal 109: 1–11. doi:10.2134/agronj2016.05.0256.
  • Obour, A. K., H. Y. Sintim, E. Obeng, and V. D. Jeliazkov. 2015. “Oilseed Camelina (Camelina Sativa L. Crantz): Production Systems, Prospects and Challenges in the USA Great Plains.” Advances in Plants & Agriculture Research 2: 1–9.
  • Patil, P. D., V. G. Gude, and S. Deng. 2009. “Biodiesel Production from Jatropha Curcas, Waste Cooking, and Camelina Sativa Oils.” Industrial & Engineering Chemistry Research 48: 10850–10856. doi:10.1021/ie901146c.
  • Pavlista, A. D., G. W. Hergert, J. M. Margheim, and T. A. Isbell. 2016. “Growth of Spring Camelina (Camelina Sativa) under Deficit Irrigation in Western Nebraska.” Industrial Crops and Products 83: 118–123. doi:10.1016/j.indcrop.2015.12.017.
  • Pavlista, A. D., T. A. Isbell, D. D. Baltensperger, and G. W. Hergert. 2011. “Planting Date and Development of Spring-Seeded Irrigated Canola, Brown Mustard and Camelina.” Industrial Crops and Products 33: 451–456. doi:10.1016/j.indcrop.2010.10.029.
  • Pilgeram, A. L., D. C. Sands, D. Boss, N. Dale, D. Wichmann, P. Lamb, C. Lu, et al. 2007. “Camelina Sativa, A Montana Omega-3 and Fuel Crop.” In Issues in New Crops and New Uses, edited by J. Janick and A. Whipkeg, 129–131. Alexandria, VA: AHSH Press.
  • Ponnampalam, E. N., M. G. Kerr, K. L. Butler, J. J. Cottrell, F. R. Dunshea, and J. L. Jacobs. 2019. “Filling the Out of Season Gaps for Lamb and Hogget Production: Diet and Genetic Influence on Carcass Yield, Carcass Composition and Retail Value of Meat.” Meat Science 148: 156–163. doi:10.1016/j.meatsci.2018.08.027.
  • Rahman, M. J., A. C. de Camargo, and F. Shahidi. 2018. “Phenolic Profiles and Antioxidant Activity of Defatted Camelina and Sophia Seeds.” Food Chemistry 240: 917–925. doi:10.1016/j.foodchem.2017.07.098.
  • Sainger, M., A. Jaiwal, P. A. Sainger, D. Chaudhary, R. Jaiwal, and P. K. Jaiwal. 2017. “Advances in Genetic Improvement of Camelina Sativa for Biofuel and Industrial Bio-Products.” Renewable and Sustainable Energy Reviews 68: 623–637. doi:10.1016/j.rser.2016.10.023.
  • SAS Institute Inc. 2016. Statistical Analysis System. Version 9.4. Cary, NC: SAS Institute.
  • Schillinger, W. F., D. J. Wysocki, T. G. Chastain, S. O. Guy, and R. S. Karow. 2012. “Camelina: Planting Date and Method Effects on Stand Establishment and Seed Yield.” Field Crops Research 130: 138–144. doi:10.1016/j.fcr.2012.02.019.
  • Shafer, M., D. Ojima, J. M. Antle, D. Kluck, R. A. McPherson, S. Petersen, B. Scanlon, and K. Sherman. 2014. “Ch. 19.” In Great Plains. Climate Change Impacts in the United States: The Third National Climate Assessment, U.S. Global Change Research Program, edited by J. M. Melillo, T.C. Richmond, and G. W. Yohe, 441–461. Accessed 9 March 2018 http://nca2014.globalchange.gov/report/regions/great-plains
  • Shonnard, D. R., L. Williams, and T. N. Kalnes. 2010. “Camelina‐Derived Jet Fuel and Diesel: Sustainable Advanced Biofuels.” Environmental Progress & Sustainable Energy 29: 382–392. doi:10.1002/ep.10461.
  • Singer, S. D., J. Zou, and R. J. Weselake. 2016. “Abiotic Factors Influence Plant Storage Lipid Accumulation and Composition.” Plant Science 243: 1–9. doi:10.1016/j.plantsci.2015.11.003.
  • Sintim, H. Y., V. D. Zheljazkov, A. K. Obour, A. G. y Garcia, and T. K. Foulke. 2015. “Influence of Nitrogen and Sulfur Application on Camelina Performance under Dryland Conditions.” Industrial Crops and Products 70: 253–259. doi:10.1016/j.indcrop.2015.03.062.
  • Sintim, H. Y., V. D. Zheljazkov, A. K. Obour, A. G. y Garcia, and T. K. Foulke. 2016. “Evaluating Agronomic Responses of Camelina to Seeding Date under Rain-Fed Conditions.” Agronomy Journal 108: 349–357. doi:10.2134/agronj2015.0153.
  • Tabatabaie, S. M. H., and G. S. Murthy. 2017. “Effect of Geographical Location and Stochastic Weather Variation on Life Cycle Assessment of Biodiesel Production from Camelina in the Northwestern USA.” International Journal of Life Cycle Assessment 22: 867–882. doi:10.1007/s11367-016-1191-9.
  • Urbaniak, S. D., C. D. Caldwell, V. D. Zheljazkov, R. Lada, and L. Luan. 2008. “The Effect of Seeding Rate, Seeding Date and Seeder Type on the Performance of Camelina Sativa L. In the Maritime Provinces of Canada.” Canadian Journal of Plant Science 88: 501–508. doi:10.4141/CJPS07148.
  • USDA. 2010. A USDA Regional Roadmap to Meeting the Biofuels Goals of the Renewable Fuels Standard by 2022. USA: USDA Biofuels Strategic Production Report.
  • Vollmann, J., T. Moritz, C. Kargl, S. Baumgartner, and H. Wagentristl. 2007. “Agronomic Evaluation of Camelina Genotypes Selected for Seed Quality Characteristics.” Industrial Crops and Products 26: 270–277. doi:10.1016/j.indcrop.2007.03.017.
  • Yang, J., C. Caldwell, K. Corscadden, Q. S. He, and J. Li. 2016. “An Evaluation of Biodiesel Production from Camelina Sativa Grown in Nova Scotia.” Industrial Crops and Products 88: 162–168. doi:10.1016/j.indcrop.2015.11.073.
  • Zanetti, F., C. Eynck, M. Christou, M. Krzyżaniak, D. Righini, E. Alexopoulou, M. J. Stolarski, E. N. Van Loo, D. Puttick, and A. Monti. 2017. “Agronomic Performance and Seed Quality Attributes of Camelina (Camelina Sativa L. Crantz) in Multi-Environment Trials across Europe and Canada.” Industrial Crops and Products 107: 602–608. doi:10.1016/j.indcrop.2017.06.022.
  • Zhang, J., Y. Xie, Z. Dang, L. Wang, W. Li, W. Zhao, L. Zhao, and Z. Dang. 2016. “Oil Content and Fatty Acid Components of Oilseed Flax under Different Environments in China.” Agronomy Journal 108: 365–372. doi:10.2134/agronj2015.0224.
  • Zubr, J., and B. Matthaus. 2002. “Effects of Growth Conditions on Fatty Acids and Tocopherols in Camelina Sativa Oil.” Industrial Crops and Products 15: 155–162. doi:10.1016/S0926-6690(01)00106-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.