498
Views
4
CrossRef citations to date
0
Altmetric
Review

Leveraging photosynthetic efficiency toward improving crop yields

, , &
Pages 361-402 | Received 01 Jan 2020, Accepted 12 Sep 2020, Published online: 13 Oct 2020

References

  • Abdelrahman, M., M. El-Sayed, S. Jogaiah, D. J. Burritt, and L. P. Tran. 2017. “The “STAY-GREEN” trait and phytohormone signaling networks in plants under heat stress.” Plant Cell Reproduction 36: 1009–1025.
  • Adachi, S., Y. Tsuru, N. Nito, K. Murata, T. Yamamoto, T. Ebitani, T. Ookawa, and T. Hirasawa. 2011. “Identification and characterization of genomic regions on chromosomes 4 and 8 that control the rate of photosynthesis in rice leaves.” Journal of Experimental Botany 62 (6): 1927–1938.
  • Ambler, J. R., P. W. Morgan, and W. R. Jordan. 1992. “Amounts of Zeatin and Zeatin Riboside in Xylem Sap of senescent and nonsenescent sorghum.” Crop Science 32: 411–419. doi:10.2135/cropsci1992.0011183X003200020027x.
  • Andralojc, P. J., S. Bencze, P. J. Madgwick, H. Philippe, S. J. Powers, I. Shield, A. Karp, and M. A. J. Parry. 2014. “Photosynthesis and growth in diverse willow genotypes.” Food and Energy Security 3: 69–85. doi:10.1002/fes3.47.
  • Annunziata, M. G. 2019. “Enhancing wheat rubisco activase thermostability by mutagenesis of conserved residues from heat-adapted species.” Plant Physiology 181 (1): 3. doi:10.1104/pp.19.00794.
  • Armstead, I., I. Donnison, S. Aubry, J. Harper, S. Hörtensteiner, C. James, J. Mani, et al.. 2006. “From crop to model to crop: identifying the genetic basis of the staygreen mutation in the forage grass festuca pratensis (Huds.)”. New Phytologist 172: 592–597. doi:10.1111/j.1469-8137.2006.01922.x.
  • Bailey-Serres, J., J. E. Parker, E. A. Ainsworth, G. E. D. Oldroyd, and J. I. Schroeder. 2019. “Genetic strategies for improving crop yields.” Nature 575 (7781): 109–118. doi:10.1038/s41586-019-1679-0.
  • Barakat, M. N., L. E. Wahba, and S. I. Milad. 2013. “Molecular mapping of QTLs for wheat flag leaf senescence under water-stress.” Biologia Plantarum 57 (1): 79–84. doi:10.1007/s10535-012-0138-7.
  • Barta, C., A. M. Dunkle, R. M. Wachter, and M. E. Salvucci. 2010. “Structural changes associated with the acute thermal instability of rubisco activase.” Archives of Biochemistry and Biophysics 499: 17–25.
  • Basu, S., V. Ramegowda, A. Kumar, and A. Pereiraa. 2016. “Plant adaptation to drought stress.” F1000Research 5: F1000 Faculty Rev–1554. doi:10.12688/f1000research.7678.1.
  • Basu, U., D. Bajaj, A. Sharma, N. Malik, A. Daware, L. Narnoliya, V. Thakro, et al.. 2019. “Genetic dissection of photosynthetic efficiency traits for enhancing seed yield in chickpea.” Plant, Cell &Environment 42 (1): 158–173. doi:10.1111/pce.13319.
  • Bauwe, H., M. Hagemann, and A. R. Fernie. 2010. “Photorespiration: players, partners and origin.” Trends in Plant Science 15: 330–336. doi:10.1016/j.tplants.2010.03.006.
  • Breeze, E., E. Harrison, S. McHattie, L. Hughes, R. Hickman, C. Hill, S. Kiddle, et al.. 2011. “High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation”. The Plant Cell 23: 873–894. doi:10.1105/tpc.111.083345.
  • Brzezowski, P., B. Ksas, M. Havaux, B. Grimm, M. Chazaux, G. Peltier, X. Johnson, and J. Alric. 2019. “The function of protoporphyrinogen IX oxidase in chlorophyll biosynthesis requires oxidised plastoquinone in Chlamydomonas Reinhardtii.” Communications Biology 2: 159. doi:10.1038/s42003-019-0395-5.
  • Buchanan-Wollaston, V., T. Page, E. Harrison, E. Breeze, P. O. Lim, H. G. Nam, J.-F. Lin, et al.. 2005. “Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis”. Plant Journal 42: 567–585. doi:10.1111/j.1365-313X.2005.02399.x.
  • Buckley, C. R., R. S. Caine, and J. E. Gray. 2020. “Pores for thought: can genetic manipulation of stomatal density protect future rice yields?.” Frontiers in Plant Science 10: 1783. doi:10.3389/fpls.2019.01783.
  • Busch, F. A., T. L. Sage, A. B. Cousins, and R. F. Sage. 2013. “C3 plants enhance rates of photosynthesis by re-assimilating photo-respired and respired CO2.” Plant Cell Environment 36: 200–212. doi:10.1111/j.1365-3040.2012.02567.x.
  • Camejo, D., A. Jiménez, J. J. Alarcόn, W. Torres, J. M. Gόmez, and F. Sevilla. 2006. “Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants.” Functional Plant Biology 33: 177–187. doi:10.1071/FP05067.
  • Cardona, T., S. Shao, P. J. Nixon, and S. Gutteridge. 2018. “Enhancing photosynthesis in plants: the light reactions.” Essays in Biochemistry 62 (1): 85–94. doi:10.1042/EBC20170015.
  • Carmo-Silva, A. E., and M. E. Salvucci. 2012. “The temperature response of CO2 assimilation, photochemical activities and rubisco activation in Camelina Sativa, a potential bioenergy crop with limited capacity for acclimation to heat stress.” Planta 236: 1433–1445. doi:10.1007/s00425-012-1691-1.
  • Carvalho, J. D. C., P. J. Madgwick, S. J. Powers, A. J. Keys, P. J. Lea, and M. A. J. Parry. 2011. “An engineered pathway for Glyoxylate metabolism in tobacco plants aimed to avoid the release of ammonia in photorespiration.” BMC Biotechnology 11: 111. doi:10.1186/1472-6750-11-111.
  • Chang, C. C., R. D. Locy, R. Smeda, S. V. Sahi, and N. K. Singh. 1997. “Photoautotrophic tobacco cells adapted to grow at high salinity.” Plant Cell Reports 16 (7): 495–502. doi:10.1007/BF01092773.
  • Chen, G., C. Wu, L. He, Z. Qiu, S. Zhang, Y. Zhang, L. Guo, et al.. 2018. “Knocking out the gene RLS1 induces hypersensitivity to oxidative stress and premature leaf senescence in rice.” International Journal of Molecular Science 19 (10): 2853. doi:10.3390/ijms19102853.
  • Croft, H., J. M. Chen, Y. Zhang, and A. Simic. 2013. “Modelling leaf chlorophyll content in broadleaf and needle leaf canopies from ground, CASI, Landsat TM 5 and MERIS reflectance data.” Remote Sensing of Environment 133: 128–140. doi:10.1016/j.rse.2013.02.006.
  • Dalal, J., H. Lopez, N. B. Vasani, Z. H. Hu, J. E. Swift, R. Yalamanchili, M. Dvora, et al.. 2015. “A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina Sativa.” Biotechnology for Biofuels 8: 175. doi:10.1186/s13068-015-0357-1.
  • Dhanapal, A. P., J. D. Ray, S. K. Singh, V. Hoyos-Villegas, J. R. Smith, L. C. Purcell, and F. B. Fritschi. 2016. “Genome-wide association mapping of soybean chlorophyll traits based on canopy spectral reflectance and leaf extracts.” BMC Plant Biology 16 (1): 174. doi:10.1186/s12870-016-0861-x.
  • Eisenhut, M., and A. P. M. Weber. 2019. “Improving crop yield.” Science 363 (6422): 32–33. doi:10.1126/science.aav8979.
  • Evans, J. R. 2013. “Improving photosynthesis.” Plant Physiology 162: 1780–1793. doi:10.1104/pp.113.219006.
  • Farooq, M., A. Wahid, N. Kobayashi, D. Fujita, and S. M. A. Basra. 2009. “Plant drought stress: effects, mechanisms and management.” In Agronomy for Sustainable Development. Springer Verlag/EDP Sciences/INRA. 29 (1): 185–212. doi:10.1051/agro:2008021.
  • Foyer, C. H., A. V. Ruban, and P. J. Nixon. 2017. “Photosynthesis solutions to enhance productivity.” Philosophical Transactions of the Royal Society B 372 (1730): 20160374. doi:10.1098/rstb.2016.0374.
  • Fujimoto, R., J. M. Taylor, S. Shirasawa, W. J. Peacock, and E. S. Dennis. 2012. “Heterosis of Arabidopsis hybrids between C24 and Col Is associated with increased photosynthesis capacity.” Proceedings of the National Academy of Sciences of the United States of America 109 (18): 7109–7114. doi:10.1073/pnas.1204464109.
  • Fukayama, H., M. D. Hatch, T. Tamai, H. Tsuchida, S. Sudoh, R. T. Furbank, and M. Miyao. 2003. “Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants.” Photosynthesis Research 77 (2–3): 227–239. doi:10.1023/A:1025861431886.
  • Galmés, J., P. J. Andralojc, M. V. Kapralov, J. Flexas, A. J. Keys, A. Molins, M. A. J. Parry, and M. A. Conesa. 2014. “Environmentally driven evolution of Rubisco and improved photosynthesis within the C3 genus Limonium.” New Phytologist 203: 989–999. doi:10.1111/nph.12858.
  • Gan, S., and R. M. Amasino. 1995. “Inhibition of leaf senescence by autoregulated production of cytokinin.” Science 270: 1986–1988. doi:10.1126/science.270.5244.1986.
  • Gang, Z., T. Yu, Y. Banghua, and L. Xiaolei. 1992. “A study on the relationship between the chlorophyll content and the yield of plant of tartary buckwheat.” Proceedings of 5th International Symposium of Buckwheat at Taiyuan, China. pp. 122-126.
  • García-Valenzuela, X., E. García-Moya, Q. Rascón-Cruz, L. Herrera-Estrella, and G. A. Aguado-Santacruz. 2005. “Chlorophyll accumulation is enhanced by osmotic stress in graminaceous chlorophyllic cells.” Journal of Plant Physiology 162 (6): 650–661.
  • Ghimire, B., D. Timsin, and J. Nepal. 2015. “Analysis of chlorophyll content and its correlation with yield attributing traits on early varieties of maize (Zea Mays L.).” Journal of Maize Research and Development 1 (1): 134–145. doi:10.3126/jmrd.v1i1.14251.
  • Ghirardi, M. L., and A. Melis. 1988. “Chlorophyll B deficiency in soybean mutants. I. Effects on the photosystem stoichiometry and chlorophyll antenna size.” Biochimica Et Biophysica Acta 92: 130–137. doi:10.1016/0005-2728(88)90147-8.
  • Gitelson, A. A., Y. Z. Yacobi, D. C. Rundquist, R. Stark, L. Han, and D. Etzion. 2000. “Remote estimation of chlorophyll concentration in productive waters: principals, algorithm development, and validation.” In Proceedings of NWQMC, National Monitoring Conference (Austin, Texas), pp. 149–160.
  • Głowacka, K., J. Kromdijk, K. Kucera, J. Xie, A. P. Cavanagh, L. Leonelli, A. D. B. Leakey, D. R. Ort, K. K. Niyogi, and S. P. Long. 2018. “Photosystem II subunit S overexpression increases the efficiency of water use in a field-grown crop.” Nature Communications 9: 868. doi:10.1038/s41467-018-03231-x.
  • Gous, P. W., L. Hickey, J. T. Christopher, J. Franckowiak, G. P. Fox. 2016. “Discovery of QTL for stay-green and heat-stress in barley (Hordeum Vulgare) grown under simulated abiotic stress conditions”. Euphytica 207: 305–317. doi:10.1007/s10681-015-1542-9.
  • Gray, J., D. Janick-Buckner, B. Buckner, P. S. Close, and G. S. Johal. 2002. “Light-dependent death of maize Lls1 cells is mediated by mature chloroplasts.” Plant Physiology 130 (4): 1894–1907. doi:10.1104/pp.008441.
  • Gray, J., P. S. Close, S. P. Briggs, and G. S. Johal. 1997. “A novel suppressor of cell death in plants encoded by the Lls1 gene of maize.” Cell 89: 25–31.
  • Gu, J., X. Yin, P. C. Struik, T. J. Stomph, and H. Wang. 2012. “Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza Sativa L.) leaves under drought and well-watered field conditions.” Journal of Experimental Botany 63 (1): 455–469. doi:10.1093/jxb/err292.
  • Guiamét, J. J., E. Schwartz, E. Pichersky, and L. D. Noodén. 1991. “Characterization of cytoplasmic and nuclear mutations affecting chlorophyll and chlorophyll-binding proteins during senescence in soybean.” Plant Physiology 96 (1): 227–231. doi:10.1104/pp.96.1.227.
  • Gupta, N., and S. K. Thind. 2015. “Improving photosynthetic performance of bread wheat under field drought stress by Foliar applied glycine Betaine.” Journal of Agricultural Science and Technology 17: 75–86.
  • Hajihashemi, S., F. Noedoost, J. M. Geuns, I. Djalovic, and K. H. Siddique. 2018. “Effect of cold stress on photosynthetic traits, carbohydrates, morphology, and anatomy in nine cultivars of Stevia Rebaudiana.” Frontiers in Plant Science 9: 1430. doi:10.3389/fpls.2018.01430.
  • Herrmann, H. A., J. Schwartz, and G. N. Johnson. 2019. “Metabolic acclimation—a key to enhancing photosynthesis in changing environments?.” Journal of Experimental Botany 70 (12): 3043–3056. doi:10.1093/jxb/erz157.
  • Hervé, D., F. Fabre, E. F. Berrios, N. Leroux, G. A. Chaarani, C. Planchon, A. Sarrafi, and L. Gentzbittel. 2001. “QTL analysis of photosynthesis and water status traits in sunflower (Helianthus Annuus L.) under greenhouse conditions.” Journal of Experimental Botany 52 (362): 1857–1864. doi:10.1093/jexbot/52.362.1857.
  • Hochholdinger, F., and N. Hoecker. 2007. “Towards the molecular basis of heterosis.” Trends in Plant Science 12: 427–432. doi:10.1016/j.tplants.2007.08.005.
  • Hörtensteiner, S. 2013. “Update on the biochemistry of chlorophyll breakdown.” Plant Molecular Biology 82: 505–517.
  • IPCC (The Intergovernmental Panel on Climate Change). 2007. “Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.” In Climate Change 2007: The Physical Science Basis. edited by. Solomon, S., D. Qin, M. Manning, M.Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller, Jr., and Z. Chen., pp. 1-18. Cambridge, UK: Cambridge University Press.
  • Ishikawa, C., T. Hatanaka, S. Misoo, C. Miyake, and H. Fukayama. 2011. “Functional incorporation of Sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice.” Plant Physiology 156: 1603–1611. doi:10.1104/pp.111.177030.
  • Jagadish, K. S. V., P. B. Kavi Kishor, R. N. Bahuguna, N. von Wirén, and N. Sreenivasulu. 2015. “Staying alive or going to die during terminal senescence—an enigma surrounding yield stability.” Frontiers in Plant Science 6: 1070. doi:10.3389/fpls.2015.01070.
  • James, M., M. Poret, C. Masclaux-Daubresse, A. Marmagne, L. Coquet, T. Jouenne, P. Chan, J. Trouverie, and P. Etienne. 2018. “SAG12, a major cysteine protease involved in nitrogen allocation during senescence for seed production in Arabidopsis Thaliana.” Plant Cell Physiology 59 (10): 2052–2063. doi:10.1093/pcp/pcy125.
  • Kajala, K., S. Covshoff, S. Karki, H. Woodfield, B. J. Tolley, M. J. A. Dionora, R. T. Mogul, et al.. 2011. “Strategies for engineering a two-Celled C4 photosynthetic pathway into rice.” Journal of Experimental Botany 62 (9): 3001–3010. DOI:10.1093/jxb/err022.
  • Kanbe, T., H. Sasaki, N. Aoki, T. Yamagishi, and R. Ohsugi. 2009. “The QTL analysis of RuBisCO in flag leaves and non-structural carbohydrates in leaf sheaths of rice using chromosome segment substitution lines and backcross progeny F2 populations.” Plant Production Science 12 (2): 224–232. doi:10.1626/pps.12.224.
  • Kandoi, D., S. Mohanty, Govindjee, and B. C. Tripathy. 2016. “Towards efficient photosynthesis: overexpression of Zea Mays phosphoenolpyruvate carboxylase in Arabidopsis Thaliana.” Photosynthesis Research 130: 47–72. doi:10.1007/s11120-016-0224-3.
  • Kapralov, M. V., and D. A. Filatov. 2007. “Widespread positive selection in the photosynthetic Rubisco enzyme.” BMC Evolutionary Biology 7: 73. doi:10.1186/1471-2148-7-73.
  • Karki, S., G. Rizal, and W. P. Quick. 2013. “Improvement of photosynthesis in rice (Oryza Sativa L.) by inserting the C4 pathway.” Rice (N Y) 6: 28. doi:10.1186/1939-8433-6-28.
  • Kassahun, B., F. R. Bidinger, C. T. Hash, and M. S. Kuruvinashetti. 2010. “Stay-green expression in early generation Sorghum [Sorghum Bicolor (L.) Moench] QTL introgression lines.” Euphytica 172 (3): 351–362. doi:10.1007/s10681-009-0108-0.
  • Kebeish, R., M. Niessen, K. Thiruveedhi, R. Bari, H. J. Hirsch, R. Rosenkranz, N. Stäbler, et al.. 2007. “Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis Thaliana.” Nature Biotechnology 25 (5): 593–599. DOI:10.1038/nbt1299.
  • Khayatnezhad, M., M. Zaeifizadeh, and R. Gholamin. 2011b. “Effect of end-season drought stress on chlorophyll fluorescence and content of antioxidant enzyme superoxide Dismutase enzyme (SOD) in susceptible and tolerant genotypes of Durum wheat.” African Journal of Agricultural Research 6 (30): 6397–6406.
  • Khayatnezhad, M., R. Gholamin, S. Jamaati, and R. Zabihi-E-Mahmoodabad. 2011a. “The leaf chlorophyll content and stress resistance relationship considering in corn cultivars (Zea. Mays).” Advances in Environmental Biology 5 (1): 118–122.
  • Khush, G. S. 1995. “Breaking the yield frontier of rice.” GeoJournal 35: 329–332.
  • Khush, G. S. 2000. “New Plant Type of Rice for Increasing the Genetic Yield Potential.” In Rice Breeding and Genetics, edited by J. S. Nanda, 99–108. Enfield (NH): Science Publishers.
  • Khush, G. S. 2007. “Foreword.” In Breeding Major Food Staples, edited by M. S. Kang and P. M. Priyadarshan, vii–viii. Ames, Iowa: Blackwell Publishing.
  • Kim, H. J., H. Ryu, S. H. Hong, H. R. Woo, P. O. Lim, I. C. Lee, J. Sheen, H. G. Nam, and I.Hwang. 2006. “Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis.” Proceedings of the National Academy of Sciences of the United States of America 103:814–819.
  • Kim, K., H. Ryu, Y. H. Cho, E. Scacchi, S. Sabatini, and I. Hwang. 2012. “Cytokinin-facilitated proteolysis of arabidopsis response regulator 2 attenuates signaling output in two-component circuitry.” The Plant Journal 69: 934–945. doi:10.1111/j.1365-313X.2011.04843.x.
  • Kohzuma, K., Y. Sato, H. Ito, A. Okuzaki, M. Watanabe, H. Kobayashi, M. Nakano, et al.. 2017. “The non-mendelian green cotyledon gene in soybean encodes a small subunit of photosystem II.” Plant Physiology 173 (4): 2138–2147. DOI:10.1104/pp.16.01589.
  • Kromdijk, J., K. Głowacka, L. Leonelli, S. T. Gabilly, M. Iwai, K. K. Niyogi, and S. P. Long. 2016. “Improving photosynthesis and crop productivity by accelerating recovery from photoprotection.” Science 354 (6314): 857–861. doi:10.1126/science.aai8878.
  • Kubis, A., and A. Bar-Even. 2019. “Synthetic biology approaches for improving photosynthesis.” Journal of Experimental Botany 70 (5): 1425–1433.
  • Kumar, A., C. Li, and A. R. Portis Jr.. 2009. “Arabidopsis Thaliana expressing a thermostable chimeric rubisco activase exhibits enhanced growth and higher rates of photosynthesis at moderately high temperatures.” Photosynthesis Research 100: 143–153. doi:10.1007/s11120-009-9438-y.
  • Kumar, U., A. K. Joshi, M. Kumari, R. Paliwal, S. Kumar, and M. S. Röder. 2010. “Identification of QTLs for stay green trait in wheat (Triticum Aestivum L.) In the ‘Chirya 3ʹבSonalika’ population.” Euphytica 174 (3): 437–445. doi:10.1007/s10681-010-0155-6.
  • Kurek, I., K. C. Thom, S. M. Bertain, A. Madrigal, L. Liu, M. W. Lassner, and G. Zhu. 2007. “Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress.” The Plant Cell 19: 3230–3241. doi:10.1105/tpc.107.054171.
  • Kusaba, M., A. Tanaka, and R. Tanaka. 2013. “Stay-green plants: what do they tell us about the molecular mechanism of leaf senescence.” Photosynthesis Research 117: 221–234.
  • Laza, M. R., S.Peng, S. Akita, and H. Saka. 2003. “Contribution of Biomass Partitioning and Translocation to Grain Yield under Sub-OptimumGrowing Conditions in Irrigated Rice.” Plant Production Science 6(1): 28–35. doi:DOI:
  • Li, H., Y. Yang, H. Zhang, S. Chu, X. Zhang, D. Yin, D. Yu, and D. Zhang. 2016. “A genetic relationship between phosphorus efficiency and photosynthetic traits in soybean as revealed by QTL analysis using a high-density genetic map.” Frontiers in Plant Science 7: 924. doi:10.3389/fpls.2016.00924.
  • Li, Y., A. Luo, M. Hassan, and X. Wei. 2006. “Effect of phosphorus deficiency on leaf photosynthesis and carbohydrates partitioning in two rice genotypes with contrasting low phosphorus susceptibility.” Rice Science 13: 283–290.
  • Li, Y., N. He, J. Hou, L. Xu, C. Liu, J. Zhang, Q. Wang, X. Zhang, and X. Wu. 2018. “Factors influencing leaf chlorophyll content in natural forests at the biome scale.” Frontiers in Ecology and Evolution 6: 64. doi:10.3389/fevo.2018.00064.
  • Lippman, Z. B., and D. Zamir. 2007. “Heterosis: revisiting the magic.” Trends in Genetics 23 (2): 60–66. doi:10.1016/j.tig.2006.12.006.
  • Liu, C., Y. Liu, Y. Lu, Y. Liao, J. Nie, X. Yuan, and F. Chen. 2019. “Use of a leaf chlorophyll content index to improve the prediction of above-ground biomass and productivity.” Peer Journal 6: e6240. doi:10.7717/peerj.6240.
  • Liu, E., X. Liu, S. Zeng, K. Zhao, C. Zhu, Y. Liu, M. C. Breria, B. Zhang, and D.Hong. 2015. “Time-course association mapping of the grain-filling rate in rice (Oryza Sativa L.).” PLoS ONE 10 :e0119959. doi:10.1371/journal.pone.0119959.
  • Liu, X. G., H. Xu, J. Y. Zhang, G. W. Liang, Y. T. Liu, and A. G. Guo. 2012. “Effect of low temperature on chlorophyll biosynthesis in Albinism line of wheat (Triticum Aestivum) FA85.” Physiologia Plantarum 145 (3): 384–394.
  • Locy, R. D., C. C. Chang, B. L. Nielsen, and N. K. Singh. 1996. “Photosynthesis in salt-adapted heterotrophic tobacco cells and regenerated plants.” Plant Physiology 110 (1): 321–328.
  • Long, S. P., A. Marshall-Colon, and X. G. Zhu. 2015. “Meeting the global food demand of the future by engineering crop photosynthesis and yield potential.” Cell 161 (1): 56–66. doi:10.1016/j.cell.2015.03.019.
  • Long, S. P., X. G. Zhu, S. L. Naidu, and D. R. Ort. 2006. “Can improvement in photosynthesis increase crop yields?” Plant, Cell & Environment 29 (3): 315–330.
  • Lopez‐Calcagno, P. E., S. Fisk, K. L. Brown, S. E. Bull, P. F. South, and C. A. Raines. 2018. “Overexpressing the H‐protein of the Glycine cleavage system increases biomass yield in glasshouse and field grown transgenic tobacco plants.” Plant Biotechnology Journal 16: 1–11.
  • Luche, H. D. S., J. A. G. D. Silva, L. C. D. Maia, and A. C. D. Oliveira. 2015. “Stay-green: a potentiality in plant breeding.” Ciência Rural 45 (10): 1755–1760. doi:10.1590/0103-8478cr20140662.
  • Maier, A., H. Fahnenstich, S. V. Caemmerer, M. K. Engqvist, A. P. Weber, U. I. Flügge, and V. G. Maurino. 2012. “Transgenic introduction of a glycolate oxidative cycle into A. Thaliana chloroplasts leads to growth improvement.” Frontiers in Plant Science 3: 38. doi:10.3389/fpls.2012.00038.
  • Martin, W. F., and H. Sies. 2017. “Physiological evolution: genomic redox footprints.” Nature Plants 3 (6): 17071. doi:10.1038/nplants.2017.71.
  • Masumoto, C., S. I. Miyazawa, H. Ohkawa, T. Fukuda, Y. Taniguchi, S. Murayama, M. Kusano, K. Saito, H. Fukayama, and M. Miyao. 2010. “Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation.” Proceedings of the National Academy of Sciences of the United States of America 107 (11): 5226–5231. doi:10.1073/pnas.0913127107.
  • Maurino, V. G., and A. P. M. Weber. 2012. “Engineering photosynthesis in plants and synthetic microorganisms.” Journal of Experimental Botany 64: 743–751. doi:10.1093/jxb/ers263.
  • Merrick, T., S. Pau, M. L. S. P. Jorge, T. S. F. Silva, and R. Bennartz. 2019. “Spatiotemporal patterns and phenology of tropical vegetation solar-induced chlorophyll fluorescence across Brazilian Biomes using satellite observations.” Remote Sensing 11 (15): 1746. doi:10.3390/rs11151746.
  • Meyer, R. C., O. Törjék, M. Becher, and T. Altmann. 2004. “Heterosis of biomass production in Arabidopsis. Establishment during early development.” Plant Physiology 134: 1813–1823. doi:10.1104/pp.103.033001.
  • Miyao, M., C. Masumoto, S. I. Miyazawa, and H. Fukayama. 2011. “Lessons from engineering a single-cell C4 photosynthetic pathway into rice.” Journal of Experimental Botany 62 (9): 3021–3029. doi:10.1093/jxb/err023.
  • Monakhova, O. F., and I. I. Chernyad’ev. 2002. “Protective role of Kartolin-4 in wheat plants exposed to soil draught.” Applied Biochemistry and Microbiology 38 (4): 373–380. doi:10.1023/A:1016243424428.
  • Monteith, J. L. 1977. “Climate and the efficiency of crop production in Britain.” Philosophical Transactions of the Royal Society of London B Biological Sciences 281 (980): 277–294.
  • Morita, R., Y. Sato, Y. Masuda, M. Nishimura, and M. Kusaba. 2009. “Defect in nonyellow coloring 3, an Alpha/Beta Hydrolase-fold family protein, causes a staygreen phenotype during leaf senescence in rice.” The Plant Journal 59: 940–952. doi:10.1111/j.1365-313X.2009.03919.x.
  • Moriwaki, T., R. Falcioni, F. A. O. Tanaka, K. A. K. Cardoso, L. A. Souza, E. B. M. R. Nanni, C. M. Bonato, W. C. Antunesab, and W. C. Antunes. 2019. “Nitrogen-improved photosynthesis quantum yield is driven by increased thylakoid density, enhancing green light absorption.” Plant Science 278: 1–11. doi:10.1016/j.plantsci.2018.10.012.
  • Mthembu, B. E., T. M. Everson, and C. S. Everson. 2019. “Intercropping for enhancement and provisioning of ecosystem services in smallholder, rural farming systems in KwaZulu-Natal province, South Africa: a review.” Journal of Crop Improvement 33 (2): 145–176. doi:10.1080/15427528.2018.1547806.
  • Müller, P., X.-P. Li, and K. K. Niyogi. 2001. “Non-photochemical quenching. a response to excess light energy.” Plant Physiology 125: 1558–1566. doi:10.1104/pp.125.4.1558.
  • Murchie, E. H., Y. Z. Chen, S. Hubbart, S. B. Peng, and P. Horton. 1999. “Interactions between senescence and leaf orientation determine in Situ patterns of photosynthesis and photoinhibition in field grown rice.” Plant Physiology 119: 553–564. doi:10.1104/pp.119.2.553.
  • Myers, J. R., M. Aljadi, and L. Brewer. 2018. “The Importance ofCosmetic Stay-Green in Specialty Crops.” Chapter 6. InPlant Breeding Reviews. Edited by I. Goldman 42: 219–256. doi:10.1002/9781119521358.ch6.
  • Nielsen, K. L., A. Eshel, and J. P. Lynch. 2001. “The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus Vulgaris L.) Genotypes.” Journal of Experimental Botany 52: 329–339.
  • Nikkanen, L., and E. Rintamäki. 2019. “Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants.” Biochemical Journal 476 (7): 1159–1172.
  • Nobel, P. S., I. N. Forseth, and S. P. Long. 1993. “Canopy Structure and Light Interception.” In Photosynthesis and Production in A Changing Environment: A Field and Laboratory Manual, edited by D. O. Hall, J. M. O. Scurlock, H. R. Bolhàr-Nordenkampf, R. C. Leegoodand, and S. P. Long, 79–90. London, UK: Chapman & Hall.
  • Nolke, G., M. Houdelet, F. Kreuzaler, C. Peterhansel, and S. Schillberg. 2014. “The expression of a recombinant glycolate dehydrogenase polyprotein in potato (Solanum Tuberosum) plastids strongly enhances photosynthesis and tuber yield.” Plant Biotechnology Journal 12: 734–742. doi:10.1111/pbi.12178.
  • Nooden, L. D., S. Singh, and D. S. Letham. 1990. “Correlation of Xylem sap cytokinin levels with monocarpic senescence in soybean.” Plant Physiology 93: 33–39. doi:10.1104/pp.93.1.33.
  • Ort, D., and S. P. Long. 2003. “Converting Solar Energy into Crop Production.” In Plants, Genes, and Crop Biotechnology, edited by M. J. Chrispeels and D. E. Sadava, 240–269. Boston, MA, USA: American Society of Plant Biologists/Jones and Bartlett.
  • Ort, D. R.,S. S. Merchant, J. Alric, A. Barkan, R. E. Blankenship, R. Bock, R.Croce, et al. 2015. “Redesigning Photosynthesis to SustainablyMeet Global Food and Bioenergy Demand.” Proceedings of theNational Academy of Sciences of the United States of America 112(28): 8529 –8536. https://doi.org/10.1073/pnas.1424031112
  • Ort, D. R., X. Zhu, and A. Melis. 2011. “Optimizing antenna size to maximize photosynthetic efficiency.” Plant Physiology 155: 79–85. doi:10.1104/pp.110.165886.
  • Ougham, H., S. Hörtensteiner, I. Armstead, I. Donnison, I. King, H. Thomas, and L. Mur. 2008. “The control of chlorophyll catabolism and the status of yellowing as a biomarker of leaf senescence.” Plant Biology 10 (s1): 4–14. doi:10.1111/j.1438-8677.2008.00081.x.
  • Parry, M. A. J., M. Reynolds, M. E. Salvucci, C. Raines, P. J. Andralojc, X. Zhu, G. D. Price, A. G. Condon, and R. T. Furbank. 2011. “Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency.” Journal of Experimental Botany 62: 453–467. doi:10.1093/jxb/erq304.
  • Parry, M. A. J., P. J. Andralojc, J. C. Scales, M. E. Salvucci, A. E. Carmo-Silva, H. Alonso, and S. M. Whitney. 2013. “Rubisco activity and regulation as targets for crop improvement.” Journal of Experimental Botany 64: 717–730.
  • Peng, S., G. S. Khush, P. Virk, Q. Tang, and Y. Zou. 2008. “Progress in ideotype breeding to increase rice yield potential.” Field Crops Research 108 (1): 32–38. doi:10.1016/j.fcr.2008.04.001.
  • Peng, S., R. C. Laza, F. C. Garcia, and K. G. Cassman. 1995. “Chlorophyll meter estimates leaf area-based N concentration of rice.” Communications in Soil Science and Plant Analysis 26: 927–935. doi:10.1080/00103629509369344.
  • Peng, S., R. C. Laza, R. M. Visperas, G. S. Khush, P. Virk, and D. Zhu. 2004. “Rice: progress in breaking the yield ceiling.” in: new direction for a diverse planet.” Proceedings of the 4th International Crop Science Congress. September 26–October 1, 2004. Brisbane, Australia: Published on CD.
  • Polle, J. E. W., S. D. Kanakagiri, and A. Melis. 2003. “Tla1, a DNA insertional transformant of the green alga Chlamydomonas Reinhardtii with a truncated light-harvesting chlorophyll antenna size.” Planta 217: 49–59. doi:10.1007/s00425-002-0968-1.
  • Prins, A., D. J. Orr, P. J. Andralojc, M. P. Reynolds, E. Carmo-Silva, and M. A. J. Parry. 2016. “Rubisco catalytic properties of wild and domesticated relatives provide scope for improving wheat photosynthesis.” Journal of Experimental Botany 67 (6): 1827–1838.
  • Pružinská, A., G. Tanner, I. Anders, M. Roca, and S. Hörtensteiner. 2003. “Chlorophyll Breakdown: pheophorbide a oxygenase is a Rieske-type iron–sulfur protein, encoded by the accelerated cell death 1 gene.” Proceedings of the National Academy of Sciences of the United States of America 100 (25): 15259–15264. doi:10.1073/pnas.2036571100.
  • Purnama, P. R., E. R. Purnama, Y. S. Manuhara, S. Hariyanto, and H. Purnobasuki. 2018. “Effect of high temperature stress on changes in morphology, anatomy and chlorophyll content in tropical seagrass Thalassia Hemprichii.” Aquaculture, Aquarium, Conservation & Legislation 11 (6): 1825–1833.
  • Queiroz, M. I., A. S. Fernandes, M. C. Deprá, E. Jacob-Lopes, and L. Q. Zepka. 2017. “Introductory Chapter.” In Chlorophyll Molecules and Their Technological Relevance. edited by. E. Jacob-Lopes, L. Q. Zepka, and M. I. Queiroz IntechOpen, London, United Kingdom. doi:10.5772/67953.
  • Rao, E. S., P. Kadirvel, R. C. Symonds, and A. W. Ebert. 2013. “Relationship between survival and yield related traits in Solanum Pimpinellifolium under salt stress.” Euphytica 190: 215–228.
  • Rissler, H. M., E. Collakova, D. DellaPenna, J. Whelan, and B. J. Pogson. 2002. “Chlorophyll biosynthesis. expression of a second Chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis.” Plant Physiology 128: 770–779. doi:10.1104/pp.010625.
  • Sage, T. L., and R. F. Sage. 2009. “The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice.” Plant Cell Physiology 50: 756–772. doi:10.1093/pcp/pcp033.
  • Sakuraba, Y., S. Schelbert, S. Y. Park, S. H. Han, B. D. Lee, C. B. Andres, F. Kessler, S. Hortensteiner, and N. C. Paek. 2012. “Stay-green and chlorophyll catabolic enzymes interact at light-harvesting complex ii for chlorophyll detoxification during leaf senescence in Arabidopsis.” The Plant Cell 24: 507–518. doi:10.1105/tpc.111.089474.
  • Saleh, M. S., A. A. Al-Doss, A. A. Elshafei, K. A. Moustafa, F. H. Al-Qurainy, and M. N. Barakat. 2014. “Identification of new trap markers linked to chlorophyll content, leaf senescence, and cell membrane stability in water-stressed wheat.” Biologia Plantarum 58 (1): 64–70. doi:10.1007/s10535-013-0351-z.
  • Sato, Y., R. Morita, M. Nishimura, H. Yamaguchi, and M. Kusaba. 2007. “Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway.” Proceedings of the National Academy of Sciences of the United States of America 104: 14169–14174. doi:10.1073/pnas.0705521104.
  • Sato, Y., R. Morita, S. Katsuma, M. Nishimura, A. Tanaka, and M. Kusaba. 2009. “Two short-chain dehydrogenase/ reductases,non-yellow coloring 1 and 26 NYC1-LIKE, are Required for chlorophyll B and light harvesting complex ii degradation during senescence in rice.” The Plant Journal 57: 120–131. doi:10.1111/j.1365-313X.2008.03670.x.
  • Savir, Y., E. Noor, R. Milo, and T. Tlusty. 2010. “Cross-species analysis traces adaptation of rubisco toward optimality in a low-dimensional landscape.” Proceedings of the National Academy of Sciences of the United States of America 107: 3475–3480. doi:10.1073/pnas.0911663107.
  • Savitch, L. V., G. Allard, M. Seki, L. S. Robert, N. A. Tinker, N. P. Huner, K. Shinozaki, et al.. 2005. “The effect of overexpression of two brassica CBF/DREB1-Like transcription factors on photosynthetic capacity and freezing tolerance in Brassica Napus”. Plant Cell & Physiology 46: 1525–1539. doi:10.1093/pcp/pci165.
  • Scafaro, A. P., N. Bautsoens, B. den Boer, J. V. Rie, and A. Gallé. 2019. “A conserved sequence from heat-adapted species improves rubisco activase thermostability in wheat.” Plant Physiology 181 (1): 43–54. doi:10.1104/pp.19.00425.
  • Schliep, M., G. Cavigliasso, R. G. Quinnell, R. Stranger, and A. W. D. Larkum. 2013. “Formyl group modification of chlorophyll A: a major evolutionary mechanism in oxygenic photosynthesis.” Plant, Cell & Environment 36: 521–527. doi:10.1111/pce.12000.
  • Sedigheh, H. G., M. Mortazavian, D. Norouzian, M. Atyabi, A. Akbarzadeh, K. Hasanpoor, and M. Ghorbani. 2011. “Oxidative stress and leaf senescence.” BMC Research Notes 4: 477. doi:10.1186/1756-0500-4-477.
  • Sharma, A., V. Kumar, B. Shahzad, M. Ramakrishnan, G. P. S. Sidhu, A. S. Bali, N. Handa et al.. 2020. “Photosynthetic response of plants under different abiotic stresses: a review.” Journal of Plant Growth Regulation 39:509–531.
  • Sharma, R. 2018. “Sun of photosynthesis Govindjee – The legendary plant physiologist of twenty first century a tribute.” SciFed Journal of Plant Physiology 1 (2). http://scifedpublishers.com/fulltext/sun-of-photosynthesis-govindjee-the-legendary-plant-physiologist-oftwenty-first-century-a-tribute/22330
  • Sharwood, R. E. 2017. “Engineering chloroplast to improve rubisco catalysis: prospects for translating improvements into food and fiber crops.” New Phytologist 213: 494–510.
  • Shi, X., and A. M. Rashotte. 2012. “Advances in upstream players of cytokinin phosphorelay: receptors and histidine phosphotransfer proteins.” Plant Cell Reproduction 31: 789–799. doi:10.1007/s00299-012-1229-9.
  • Shim, S. H., S. K. Lee, D. W. Lee, D. Brilhaus, G. Wu, S. Ko, C. H. Lee, A. P. M. Weber, and J. S. Jeon. 2020. “Loss of function of rice plastidic glycolate/glycerate translocator 1 impairs photorespiration and plant growth.” Frontiers in Plant Science 10: 1726. doi:=10.3389/fpls.2019.01726.
  • Silva, S. A., F. I. de Carvalho, V. da R. Caetano, A. C. de Oliveira, J. L. de Coimbra, N. J. S. de Vasconcellos, and C. Lorencetti. 2001. “Genetic basis of stay-green trait in bread wheat.” Journal of New Seeds 2 (2): 55–68. doi:10.1300/J153v02n02_05.
  • Simkin, A. J., P. E. Lopez-Calcagno, P. A. Davey, L. R. Headland, T. Lawson, S. Timm, H. Bauwe, and C. A. Raines. 2017. “Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphophate aldolase and the photorespiratory glycine decarboxylase-h protein increases co2 assimilation, vegetative biomass and seed yield in Arabidopsis.” The Plant Journal 15: 805–816.
  • Smart, C. M., S. R. Scofield, M. W. Bevan, and T. A. Dyer. 1991. “Delayed leaf senescence in tobacco plants transformed with Tmr, a gene for cytokinin production in Agrobacterium.” The Plant Cell 3: 647–656. doi:10.2307/3869246.
  • South, P., and D. R. Ort. 2017. “Engineering biochemical bypass to photorespiration to improve photosynthesis and crop production.” FASEB Journal 31: 628–633.
  • South, P. F., A. P. Cavanagh, H. W. Liu, and D. R. Ort. 2019. “Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field.” Science 363 (6422): aat9077. doi:10.1126/science.aat9077.
  • South, P. F., A. P. Cavanagh, P. E. Lopez-Calcagno, C. A. Raines, and D. R. Ort. 2018. “Optimizing photorespiration for improved crop productivity.” Journal of Integrative Plant Biology 60: 1217–1230. doi:10.1111/jipb.12709.
  • Sun, Q., Y. Zhang, B. Chen, B. Jia, Z. L. Zhang, M. Cui, X. Kan, H. B. Shi, D. X. Deng, and Z. T. Yin. 2017. “Expression quantitative trait loci analysis of the rubisco activase gene in maize.” Photosynthetica 55 (2): 329–337. doi:10.1007/s11099-016-0242-6.
  • Suzuki, Y., M. Ohkubo, H. Hatakeyama, K. Ohashi, R. Yoshizawa, S. Kojima, T. Hayakawa, T. Yamaya, T. Mae, and A. Makino. 2007. “Increased Rubisco content in transgenic rice transformed with the ‘Sense’ rbcS gene.” Plant & Cell Physiology 48 (4): 626–637. doi:10.1093/pcp/pcm035.
  • Takai, T., S. Adachi, F. Taguchi-Shiobara, Y. Sanoh-Arai, N. Iwasawa, S. Yoshinaga, S. Hirose, et al.. 2013. “A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate.” Scientific Reports 3 :2149. doi:10.1038/srep02149.
  • Tcherkez, G. G. B., G. D. Farquhar, and T. J. Andrews. 2006. “Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized.” Proceedings of the National Academy of Sciences of the United States of America 103 (19): 7246–7251. doi:10.1073/pnas.0600605103.
  • Teng, S., Q. Qian, D. Zeng, Y. Kunihiro, K. Fujimoto, D. Huang, and L. Zhu. 2004. “QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza Sativa L.).” Euphytica 135 (1): 1–7. doi:10.1023/B:EUPH.0000009487.89270.e9.
  • Thomas, H., and C. J. Howarth. 2000. “Five ways to stay green.” Journal of Experimental Botany 51 (suppl 1): 329–337. doi:10.1093/jexbot/51.suppl_1.329.
  • Thomas, H., and H. Ougham. 2014. “The stay-green trait.” Journal of Experimental Botany 65: 3889–3900.
  • Thorogood, D., M. Humphreys, L. Turner, and S. Laroche. 1999. “QTL Analysis of Chlorophyll Breakdown in Lolium perenne.” Abstracts of Plant and Animal Genome VII, San Diego, California, 280. http://www.intl-pag.org/pag/7/abstracts/##pg7136$$,W130.
  • Timm, S., M. Wittmiss, S. Gamlien, R. Ewald, A. Florian, M. Frank, M. Wirtz, R. Hell, A. R. Fernie, and H. Bauwea. 2015. “Mitochondrial dihydrolipoyl dehydrogenase activity shapes photosynthesis and photorespiration of Arabidopsis Thaliana.” The Plant Cell 27: 1968–1984. doi:10.1105/tpc.15.00105.
  • Trudeau, D. L., C. Edlich-Muth, J. Zarzycki, M. Scheffen, M. Goldsmith, O. Khersonsky, Z. Avizemer, et al.. 2018. “Design and in vitro realization of carbon conserving photorespiration.” Proceedings of the National Academy of Sciences of the United States of America 115 (49): E11455–E11464. doi:10.1073/pnas.1812605115.
  • Van Os, H., S. Andrzejewski, E. Bakker, I. Barrena, G. J. Bryan, B. Caromel, B. Ghareeb, et al.. 2006. “Construction of a 10,000-marker ultradense genetic recombination map of potato: providing a framework for accelerated gene isolation and a genomewide physical map.” Genetics 173 (2): 1075–1087. DOI:10.1534/genetics.106.055871.
  • Verma, V., M. J. Foulkes, A. J. Worland, R. Sylvester-Bradley, P. D. S. Caligari, and J. W. Snape. 2004. “Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments.” Euphytica 135 (3): 255–263. doi:10.1023/B:EUPH.0000013255.31618.14.
  • Vidyasagar, A. 2018. “What Is Photosynthesis?” https://www.livescience.com/51720-photosynthesis.html Assessed July 1, 2020.
  • Walker, B. J., D. T. Drewry, R. A. Slattery, A. VanLoocke, Y. B. Cho, and D. R. Ort. 2018. “Chlorophyll can be reduced in crop canopies with little penalty to photosynthesis.” Plant Physiology 176: 1215–1232. doi:10.1104/pp.17.01401.
  • Wang, B., Z. Li, Q. Ran, P. Li, Z. Peng, and J. Zhang. 2019. “ZmNF-YB16 overexpression improves drought resistance and yield by enhancing photosynthesis and the antioxidant capacity of maize plants.” Frontiers in Plant Science 9: 709. doi:10.3389/fpls.2018.00709.
  • Wang, G., M. S. Kang, and O. J. Moreno. 1999. “Genetic analyses of grain-filling rate and duration in maize.” Field Crops Research 61: 211–222. doi:10.1016/S0378-4290(98)00163-4.
  • Wang, Q., J. Chen, N. He, and F. Guo. 2018. “Metabolic reprogramming in chloroplasts under heat stress in plants.” International Journal of Molecular Science 19 (3): 849. doi:10.3390/ijms19030849.
  • Westerveld, S. M., A. W. McKeown, M. R. McDonald, and C. D. Scott-Dupree. 2004. “Assessment of chlorophyll and nitrate meters as field tissue nitrogen tests for cabbage, onions, and carrots.” HortTechnology 14 (2): 179–188. doi:10.21273/HORTTECH.14.2.0179.
  • Wettstein, V. D., S. Gough, and C. G. Kannangara. 1995. “Chlorophyll biosynthesis.” The Plant Cell 7 (7): 1039–1057. doi:10.2307/3870056.
  • Winicov, I., and J. D. Button. 1991. “Accumulation of photosynthesis gene transcripts in response to sodium chloride by salt-tolerant alfalfa cells.” Planta 183 (4): 478–483. doi:10.1007/BF00194267.
  • Woehle, C., T. Dagan, G. Landan, A. Vardi, and S. Rosenwasser. 2017. “Expansion of the redox-sensitive proteome coincides with the plastid endosymbiosis.” Nature Plants 3 (6): 17066. doi:10.1038/nplants.2017.66.
  • Wu, A., G. L. Hammer, A. Doherty, S. V. Caemmerer, and G. D. Farquhar. 2019. “Quantifying impacts of enhancing photosynthesis on crop yield.” Nature Plants 5: 380–388. doi:10.1038/s41477-019-0398-8.
  • Yamori, W., C. Masumoto, H. Fukayama, and A. Makino. 2012. “Rubisco activase is a key regulator of non‐steady‐state photosynthesis at any leaf temperature and, to a lesser extent, of steady‐state photosynthesis at high temperature.” The Plant Journal 71: 871–880. doi:10.1111/j.1365-313X.2012.05041.x.
  • Yin, Z., F. Meng, H. Song, X. Wang, X. Xu, and D. Yu. 2009. “Expression quantitative trait Loci analysis of two genes encoding rubisco activase in soybean1 [W][OA].” Plant Physiology 152: 1624–1637.
  • Yin, Z., Z. Zhang, D. Deng, M. Chao, Q. Gao, Y. Wang, Z. Yang, Y. Bian, D. Hao, and C. Xu. 2014. “Characterization of RuBisCo activase genes in maize: an α-isoform gene functions alongside a β-isoform gene.” Plant Physiology 164 (4): 2096–2106.
  • Yoon, D., K. Ishiyama, M. Suganami, Y. Tazoe, M. Watanabe, S. Imaruoka, M. Ogura, et al.. 2020. “Transgenic rice overproducing rubisco exhibits increased yields with improved nitrogen-use efficiency in an experimental paddy field”. Nature Food 1: 134–139. doi:10.1038/s43016-020-0033-x.
  • Zhang, K., Z. Fang, Y. Liang, and J. Tian. 2009. “Genetic dissection of chlorophyll content at different growth stages in common wheat.” Journal of Genetics 88 (2): 183–189. doi:10.1007/s12041-009-0026-x.
  • Zhang, X., Z. Zhang, J. Li, L. Wu, J. Guo, L. Ouyang, Y. Xia, et al.. 2011. “Correlation of leaf senescence and gene expression/activities of chlorophyll degradation enzymes in harvested Chinese flowering cabbage (Brassica Rapa Var. Parachinensis).” The Journal of Plant Physiology 168 (17): 2081–2087. DOI:10.1016/j.jplph.2011.06.011.
  • Zhu, X. G., A. R. Portis, and S. P. Long. 2004. “Would transformation of C3 crop plants with foreign rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis.” Plant, Cell & Environment 27: 155–165. doi:10.1046/j.1365-3040.2004.01142.x.
  • Zhu, X. G., S. P. Long, and D. R. Ort. 2008. “What Is the maximum efficiency with which photosynthesis can convert solar energy into biomass?.” Current Opinions in Biotechnology 19 (2): 153–159. doi:10.1016/j.copbio.2008.02.004.
  • Zhu, X. G., S. P. Long, and D. R. Ort. 2010. “Improving photosynthetic efficiency for greater yield.” Annual Review of Plant Biology 61: 235–261. doi:10.1146/annurev-arplant-042809-112206.
  • Zobayed, S. M. A., F. Afreen, and T. Kozai. 2005. “Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s Wort.” Plant Physiology and Biochemistry 43 (10–11): 977–984. doi:10.1016/j.plaphy.2005.07.013.
  • Zou, X., Z. Sun, N. Yang, L. Zhang, W. Sun, S. Niu, L. Tan, H. Liu, D. Fornara, and L. Li. 2019. “Interspecific root interactions enhance photosynthesis and biomass of intercropped millet and peanut plants.” Crop & Pasture Science 70 (3): 234–243. doi:10.1071/CP18269.
  • Zwack, P. J., and A. M. Rashotte. 2013. “Cytokinin Inhibition of leaf senescence.” Plant Signaling & Behavior 8 (7): e24737. doi:10.4161/psb.24737.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.