168
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Spherification of Hydrocolloids by Jet Cutter

, , , , , ORCID Icon & ORCID Icon show all
Pages 759-772 | Received 01 Oct 2021, Accepted 09 May 2022, Published online: 31 May 2022

References

  • Ambravaneswaran, B., Subramani, H. J., Phillips, S. D., & Basaran, O. A. (2004). Dripping-jetting transitions in a dripping faucet. Physical Review Letters, 93(3), 034501. doi:10.1103/PhysRevLett.93.034501
  • Banerjee, S., & Bhattacharya, S. (2012). Food gels: Gelling process and new applications. Critical Reviews in Food Science and Nutrition, 52(4), 334–346. doi:10.1016/B978-0-08-100431-9.00013-9
  • Bhujbal, S. V., Paredes-Juarez, G. A., Niclou, S. P., & de Vos, P. (2014). Factors influencing the mechanical stability of alginate beads applicable for immunoisolation of mammalian cells. Journal of the Mechanical Behavior of Biomedical Materials, 37(1), 196–208. doi:10.1016/j.jmbbm.2014.05.020
  • Chan, E., Lee, B., Ravindra, P., & Poncelet, D. (2009). Prediction models for shape and size of ca-alginate macrobeads produced through extrusion – Dripping method. Journal of Colloid and Interface Science, 338(1), 63–72. doi:10.1016/j.jcis.2009.05.027
  • Chan, E. S., Wong, S. L., Lee, P. P., Lee, J. S., Ti, T. B., Zhang, Z., … Yim, Z.-H. (2010). Effects of starch filler on the physical properties of lyophilized calcium-alginate beads and the viability of encapsulated cells. Carbohydrate Polymers, 83(1), 225–232. doi:10.1016/j.carbpol.2010.07.044
  • Chan, E., Lim, T., Ravindra, P., Fran, R., & Islam, A. (2012). The effect of low air-to-liquid mass flow rate ratios on the size, size distribution and shape of calcium alginate particles produced using the atomization method. Journal of Food Engineering, 108(2), 297–303. doi:10.1016/j.jfoodeng.2011.08.010
  • Córdoba, A. L., Deladino, L., & Martino, M. (2013). Effect of starch filler on calcium-alginate hydrogels loaded with yerba mate antioxidants. Carbohydrate Polymers, 95(1), 315–323. doi:10.1016/j.carbpol.2013.03.019
  • de Farias, Y. B., & Zapata Noreña, C. P. (2019). Reverse encapsulation using double controlled gelification for the production of spheres with liquid light soy sauce-core. International Journal of Gastronomy and Food Science, 16(October 2018), 100137. doi:10.1016/j.ijgfs.2019.100137
  • Fang, Y., Al-Assaf, S., Phillips, G. O., Nishinari, K., Funami, T., & Williams, P. A. (2008). Binding behavior of calcium to polyuronates: Comparison of pectin with alginate. Carbohydrate Polymers, 72(2), 334–341. doi:10.1016/j.carbpol.2007.08.021
  • Fu, H., Liu, Y., Adrià, F., Shao, X., Cai, W., & Chipot, C. (2014). From material science to avant-garde cuisine. the art of shaping liquids into spheres. Journal of Physical Chemistry B, 118(40), 11747–11756. doi:10.1021/jp508841p
  • Gałkowska, D., Długosz, M., & Juszczak, L. (2013). Effect of high methoxy pectin and sucrose on pasting, rheological, and textural properties of modified starch systems. Starch/Staerke, 65(5–6), 499–508. doi:10.1002/star.201200148
  • Ganesan, K., Budtova, T., Ratke, L., Gurikov, P., Baudron, V., Preibisch, I., … Milow, B. (2018). Review on the production of polysaccharide aerogel particles. Materials, 11(11), 1–37. doi:10.3390/ma11112144
  • Gaonkar, A., Vasisht, N., Khare, A., & Sobel, R. (2014). Microencapsulation in the food industry: A practical implementation guide. eds. A. Gaonkar, N. Vasisht, A. Khare, & R. Sobel. Cambridge, MA, USA: Elsevier. 241–252. doi:10.1007/s13398-014-0173-7.2
  • Guiné, R. P. F., Ferreira, P., Roque, A. R., Pinto, H., & Tomás, A. (2014). Port wine “Caviar”: product development, sensorial analysis, and marketing evaluation. Journal of Culinary Science and Technology, 12(4), 294–305. doi:10.1080/15428052.2014.904831
  • Hunik, J. H., & Tramper, J. (1993). Large-scale production of kappa-carrageenan droplets for gel-bead production: Theoretical and practical limitations of size and production rate. Biotechnology Progress, 9(2), 186–192. doi:10.1021/bp00020a011
  • Lee, P., & Rogers, M. A. (2012). Effect of calcium source and exposure-time on basic caviar spherification using sodium alginate. International Journal of Gastronomy and Food Science, 1(2), 96–100. doi:https://doi.org/10.1016/j.ijgfs.2013.06.003
  • Lee, B., Ravindra, P., & Chan, E. (2013). Size and shape of calcium alginate beads produced by extrusion dripping. Chemical Engineering Technology, 36(10), 1627–1642. doi:10.1002/ceat.201300230
  • Lee, B. B., Chan, E. S., & Ravindra, P. (2014). Calcium pectinate beads formation: Shape and size analysis. Journal of Engineering and Technological Sciences, 46(1), 78–92. doi:10.5614/j.eng.technol.sci.2014.46.1.5
  • Leong, J. Y., Lam, W. H., Ho, K. W., Voo, W. P., Lee, M. F. X., Lim, H. P. … Chan, E. S. (2016). Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology, 24, 44–60. doi:10.1016/j.partic.2015.09.004
  • Lupo, B., Maestro, A., Gutiérrez, J. M., & González, C. (2015). Characterization of alginate beads with encapsulated cocoa extract to prepare functional food: Comparison of two gelation mechanisms. Food Hydrocolloids, 49, 25–34. doi:10.1016/j.foodhyd.2015.02.023
  • Moghadam, H., Samimi, M., Samimi, A., & Khorram, M. (2008). Electro-spray of high viscous liquids for producing mono-sized spherical alginate beads. Particuology, 6(4), 271–275. doi:10.1016/j.partic.2008.04.005
  • Paulo, B. B., Ramos, F. D. M., & Prata, A. S. (2017). An investigation of operational parameters of jet cutting method on the size of Ca-alginate beads. Journal of Food Process Engineering, 40(6), 1–8. doi:10.1111/jfpe.12591
  • Picone, C. S. F., & Cunha, R. L. (2011). Influence of pH on formation and properties of gellan gels. Carbohydrate Polymers, 84(1), 662–668. doi:10.1016/j.carbpol.2010.12.045
  • Pruesse, U., Jahnz, U., Wittlich, P., & Vorlop, K.-D. (2003). Scale-up of the jet cutter technology. Hemijska Industrija, 57(12), 636–640. doi:10.2298/hemind0312636p
  • Prüße, U.F., Bruske, J., Breford, K., Vorlop, U., Bilancetti, L., Bučko, M., … Vorlop, K.-D. (2008). Comparison of different technologies for alginate beads production. Chemical Papers, 62(4), 364–374. doi:10.2478/s11696-008-0035-x
  • Schwinger, C., Koch, S., Jahnz, U., Wittlich, P., Rainov, N. G., & Kressler, J. (2002). High throughput encapsulation of murine fibroblasts in alginate using the JetCutter technology. Journal of Microencapsulation, 19(3), 273–280. doi:10.1080/02652040110105328
  • Sun, R., & Xia, Q. (2019). Release mechanism of lipid nanoparticles immobilized within alginate beads influenced by nanoparticle size and alginate concentration. Colloid and Polymer Science, 297(9), 1183–1198. doi:10.1007/s00396-019-04538-x
  • Voo, W. P., Ravindra, P., Tey, B. T., & Chan, E. S. (2011). Comparison of alginate and pectin based beads for production of poultry probiotic cells. Journal of Bioscience and Bioengineering, 111(3), 294–299. doi:10.1016/j.jbiosc.2010.11.010
  • Zhang, B., Hu, B., Nakauma, M., Funami, T., Nishinari, K., Draget, K. I., … Fang, Y. (2019). Modulation of calcium-induced gelation of pectin by oligoguluronate as compared to alginate. Food Research International, 116(July 2018), 232–240. doi:10.1016/j.foodres.2018.08.020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.