431
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Improved Conversion Efficiency in Dye-Sensitized Solar Cells Based on Electrospun TiCl4-Treated TiO2 Nanorod Electrodes

&

REFERENCES

  • Adachi , M. , Murata , Y. , Takao , J. , Jiu , J. , Sakamoto , M. and Wang , F. 2004 . Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism . Journal of the American Chemical Society , 126 : 14943 – 14949 .
  • Aguilar Ribeiro , H. , Sommeling , P.M. , Kroon , J.M. , Mendes , A. and Costa , C.A.V. 2009 . Dye-sensitized solar cells: Novel concepts, materials, and state-of-the-art performances . International Journal of Green Energy , 6 : 245 – 256 .
  • Bach , U. , Lupo Comte , D. , Moser , J.E. , Weissorte , F. , Salbeck , J. , Spreitzer , H. and Grätzel , M. 1998 . Solid-state dye-sensitized mesoporous TiO2 solar cells with photon to electron conversion efficiencies . Nature , 395 : 583 – 588 .
  • Baiju , K.V. , Shajesh , P. , Wunderlich , W. , Mukundan , P. , Kumar , S.R. and Warrier , K.G.K. 2007 . Effect of tantalum addition on anatase phase stability and photoactivity of aqueous sol–gel derived mesoporous titania . Journal of Molecular Catalysis A: Chemical , 276 : 41 – 46 .
  • Baxter , J.B. and Aydil , E.S. 2006 . Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires . Solar Energy Materials and Solar Cells , 90 : 607 – 622 .
  • Brabec , C.J. , Sariciftci , N.S. and Hummelen , J.C. 2001 . Plastic solar cells . Advanced Functional Materials , 11 : 15 – 26 .
  • De Angelis , F. , Fantacci , S. , Selloni , A. , Grätzel , M. and Nazeeruddin , M.K. 2007a . Influence of sensitizer adsorption mode on the open-circuit potential of dye-sensitized solar cells . Nanoletters , 7 : 3189 – 3195 .
  • De Angelis , F. , Fantacci , S. , Selloni , A. , Nazeeruddin , M.K. and Grätzel , M. 2007b . Time dependent density functional theory investigations on the excited states of Ru(II)-Dye-Sensitized TiO2 nanoparticles: The role of sensitizer protonation . Journal of the American Chemical Society , 129 : 14156 – 14162 .
  • Dzenis , Y. 2004 . Spinning continuous fibers for nanotechnology . Science , 304 : 1917 – 1922 .
  • Fong , H. 2007 . Polymeric nanostructures and their applications , 451 Los Angeles : American Scientific Publishers, P .
  • Gräztel , M. 2003 . Dye-sensitized solar cells . Journal of Photochemistry and Photobiology , 4 : 145 – 153 .
  • Greiner , A. and Wendorff , J.H. 2007 . Electrospinning of nanofibres: towards new techniques, functions, and applications . Angewandte Chemie International Edition , 46 : 5670 – 5676 .
  • Hamadanian , M. , Akbari , A. and Jabbari , V. 2011 . Electrospun titanium dioxide nanofibers: Fabrication, properties and its application in photo-oxidative degradation of methyl orange (MO) . Fibers and Polymers , 12 : 880 – 885 .
  • Hoffmann , M.R. , Martin , S.T. , Choi , W. and Bahnemann , D.W. 1995 . Environmental applications of semiconductor photocatalysis . Chemical Reviews , 95 : 69 – 81 .
  • Horiuchi , T. , Miura , H. and Uchida , S. 2004 . Highly efficient metal-free organic dyes for dye-sensitized solar cells . Journal of Photochemistry and Photobiology , 164 : 29 – 35 .
  • Huang , Z. , Zhang , Y. , Kotaki , M. and Ramakrishna , S. 2003 . A review on polymer nanofibers by electrospinning and their applications in nanocomposites . Composites Science and Technology , 63 : 2223 – 2253 .
  • Ito , S. 2006 . High-efficiency organic-dye- sensitized solar cells controlled by nanocrytalline-TiO2 electrode thickness . Advanced Materials , 18 : 1202 – 1205 .
  • Ito , S.P. , Liska , P. , Comte , R. , Charvet , P. , Péchy , U. , Bach , L. , Schmidt-Mende , S.M. , Zakeeruddin , A. , Kay , M.K. , Nazeeruddin and Grätzel , M. 2005 . Control of dark current in photoelectrochemical (TiO2/I−–I3 −) and dye-sensitized solar cells . Chemical Communications , 12 : 4351 – 4353 .
  • Kato , T. , Okazaki , A. and Hayase , S. 2006 . Latent gel electrolyte precursors for quasi-solid dye sensitized solar cells . Journal of Photochemistry and Photobiology , 179 : 42 – 48 .
  • Kulkarni , J. and Zhou , M. 2007 . Tunable thermal response of ZnO nanowires . Nanotechnology , 18 : 1 – 6 .
  • Komiya , R. , Han , L. , Yamanaka , R. , Islam , A. and Mitate , T. 2004 . The application of P(MMA-co-MAA)/PEG polyblend gel electrolyte in quasi-solid state dye-sensitized solar cell at higher temperature . Journal of Photochemistry and Photobiology , 164 : 123 – 127 .
  • Kumar , A. , Jose , R. , Fujihara , K. , Wang , J. and Ramakrishna , S. 2007 . Structural and optical properties of electrospun TiO2 nanofibers . Chemistry of Materials , 19 : 6536 – 6542 .
  • Kunal , M. , Tai-Hou , T. , Jose , R. and Ramakrishna , S. 2009 . Electron transport in electrospun TiO2 nanofiber dye-sensitized solar cells . Applied Physics Letters , 95 : 12101 – 12104 .
  • Law , M. , Greene , L.E. , Johnson , J.C. , Saykally , R. and Yang , P. 2005 . Nanowire dye-sensitized solar cells . Nature Materials , 4 : 455 – 462 .
  • Liska , P. , Thampi , K.R. , Grätzel , M. , Bremaud , D. , Rudmann , D. , Upadhyara , H.M. and Tiwari , A.N. 2006 . Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency . Applied Physics Letters , 88 : 203103 – 203106 .
  • Mazoochi , T. and Jabbari , V. 2011 . Chitosan nanofibrous scaffold fabricated via electrospinning: the effect of processing parameters on the nanofiber morphology . International Journal of Polymer Analysis and Characterization , 16 : 277 – 289 .
  • Menzies , D. , Cervini , R. , Cheng , Y-B. , Simon , G. and Spiccia , L. 2003 . Titanium isopropoxide post-treatment of titanium dioxide electrodes for use in dye-sensitised solar cells . Journal of the Australasian Ceramic Society , 39 : 108 – 113 .
  • Nair , J. , Nair , P. , Mizukami , F. , Oosawa , Y. and Okubo , T. 1999 . Microstructure and phase transformation behavior of doped nanostructured titania . Materials Research Bulletin , 34 : 1275 – 1290 .
  • Nazeeruddin , M.K. , De Angelis , F. , Fantacci , S. , Selloni , A. , Viscardi , G. and Liska , P. 2005 . Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers . Journal of the American Chemical Society , 127 : 16835 – 16847 .
  • Ogawa , H. , Abe , A. , Nishikawa , M. and Hayakawa , S. 1981 . Preparation of tin oxide films from ultrafine particles . Journal of the Electrochemical Society , 128 : 685 – 689 .
  • Onozuka , K. , Ding , B. , Tsuge , Y. , Naka , T. , Yamazaki , M. , Sugi , S. , Ohno , S. , Yoshikawa , M. and Shiratori , S. 2006 . Electrospinning processed nanofibrous TiO2 membranes for photocatalitic applications . Nanotechnology , 17 : 1026 – 1031 .
  • ORegan , B.C. and Grätzel , M. 1991 . A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films . Nature. , 353 : 737 – 740 .
  • Reneker , D.H. and Chun , I. 1996 . Nanometer diameter fibers of polymer produced by electrospinning . Nanotechnology , 7 : 216 – 223 .
  • Saunders , J.R. , Benfield , D. , Moussa , W. and Amirfazli , A. 2007 . Nanotechnology's implications for select systems of renewable energy . International Journal of Green Energy , 4 : 483 – 503 .
  • Schmidt-Mende , L. , Kroeze , J.E. , Durrant , J.R. , Nazeeruddin , M.K. and Grätzel , M. 2005 . Effect of hydrocarbon chain length of amphiphilic ruthenium dyes on solid-state dye-sensitized photovoltaics . Nano Letters , 5 : 1315 – 1320 . [Schmidt-Mende et al. 2005 coming twice in ref. list]
  • Seki , H. , Ishizawa , N. , Mizutani , N. , Kato , M. and Kyokai , Y.J. 1984 . High temperature structures of the rutile-type oxides, titanium dioxide and tin dioxide . Ceramic Association Japan , 92 : 219 – 223 .
  • Shin , Y.M. , Hohman , M.M. , Brenner , M.P. and Rutledge , G.C. 2001 . Electrospinning: a whipping fluid jet generates submicron polymer fibers . Applied Physics Letters , 78 : 1149 – 1155 .
  • Song , M.Y. , Ahn , Y.R. , Jo , S.M. , Kim , D.Y. and Ahn , J.P. 2005 . TiO2 electrode for quasi-solid-state dye-sensitized solar cells . Applied Physics Letters , 87 : 113 – 119 .
  • Song , M.Y. , Kim , D.K. , Ihn , K.J. , Jo , S.M. and Kim , D.Y. 2004 . Electrospun TiO2 electrodes for dye‐sensitized solar cells . Nanotechnology , 15 : 1861 – 1865 .
  • Uchida , S. , Chiba , R. , Tomiha , M. , Masaki , N. and Shirai , M. 2002 . Hydrothermal synthesis of TiO2 nanotube . Electrochemistry , 70 : 418 – 420 .
  • Wang , P. , Shaik , M.Z. , Pascal , C. , Raphael , C. , Humphry-Baker , R. and Grätzel , M. 2003 . Enhance the performance of dye-Sensitized solar cells by Co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals . The Journal of Physical Chemistry B. , 107 : 14336 – 14341 .
  • Wang , P. , Zakeeruddin , S.M. , Moser , J.E. , Humphry-Baker , R. , Comte , P. , Aranyos , V. , Hagfeldt , A. , Nazeeruddin , M.K. and Grätzel , M. 2004 . Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells . Advanced Materials , 16 : 1806 – 1812 .
  • Wang , P. , Zakeeruddin , S.M. , Moser , J.E. , Nazeeruddin , M.K. , Sekiguchi , T. and Grätzel , M. 2003 . A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte . Nature Materials , 2 : 402 – 407 .
  • Wold , A. 1993 . Photocatalytic properties of titanium dioxide (TiO2) . Chemistry of Materials , 5 : 280 – 283 .
  • Yu , G. , Gao , J. , Hummelen , J.C. , Wudl , F. and Heeger , A.J. 1995 . Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions . Science , 270 : 1789 – 1791 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.