444
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of Ferric–Manganese Doped Tungstated Zirconia Nanoparticles as Heterogeneous Solid Superacid Catalyst for Biodiesel Production From Waste Cooking Oil

, , , , &

References

  • Al-Zuhair, S. (2007). Production of biodiesel: Possibilities and challenges. Biofuels, Bioproducts and Biorefining 1(1):57–66.
  • Alhassan, F. H., R. Yunus, U. Rashid, K. Sirat, A. Islam, H. V. Lee, and Y. H. Taufiq-Yap. (2013). Production of biodiesel from mixed waste vegetable oils using Ferric hydrogen sulphate as an effective reusable heterogeneous solid acid catalyst. Applied Catalysis A: General 456:182–87.
  • American Oil Chemists’ Society (AOCS). 1997. Official Methods and Recommended Practices of the AOCS. American Oil Chemists’ Society, IL, US.
  • Arata, K., H. Matsuhashi, M. Hino, and H. Nakamura. (2003). Synthesis of solid superacids and their activities for reactions of alkanes. Catalysis Today 81(1):17–30.
  • Baertsch, C. D., K. T. Komala, Y-H. Chua, and E. Iglesia. (2002). Genesis of brønsted acid sites during dehydration of 2-butanol on tungsten oxide catalysts. Journal of Catalysis 205(1):44–57.
  • Bi, M., H. Li, W-P. Pan, W. G. Lloyd, and B. H. Davis. (1996). Thermal studies of metal promoted sulfated zirconia. American Chemical Society Division: Fuel Chemistry 41:77–81.
  • Canakci, M. and J. V. Gerpen. (2001). Biodiesel production from oils and fats with high free fatty acids. Transactions-American Society of Agricultural Engineers 44(6):1429–36.
  • Chen, X-R., C-L. Chen, N-P. Xu, and C-Y. Mou. (2004). Al- and Ga-promoted WO3/ZrO2 strong solid acid catalyst and their catalytic activities in n-butane isomerization. Catalysis Today 93–95:129–34.
  • Cheng, Z., H. Yang, L. Yu, Y. Cui, and S. Feng. (2006). Preparation and magnetic properties of Y3Fe5O12 nanoparticles doped with the gadolinium oxide.” Journal of Magnetism and Magnetic Materials 302(1):259–62.
  • Chouhan, A. P. and A. K. Sarma. (2011). Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renewable and Sustainable Energy Reviews 15(9):4378–99.
  • Corma, A. (1995). Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chemical Reviews 95(3):559–614.
  • Costa, A. A., P. R. S. Braga, J. L. de Macedo, J. A. Dias, and S. C. L. Dias. (2012). Structural effects of WO3 incorporation on USY zeolite and application to free fatty acids esterification. Microporous and Mesoporous Materials 147(1):142–8.
  • Demirbaş, A. (2003). Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: A survey. Energy Conversion and Management 44(13):2093–109.
  • Demirbas, A. (2007). Recent developments in biodiesel fuels. International Journal of Green Energy 4(1):15–26.
  • Dias, A. P. S., J. Puna, M. J. N. Correia, I. Nogueira, J. Gomes, and J. Bordado. (2013). Effect of the oil acidity on the methanolysis performances of lime catalyst biodiesel from waste frying oils (WFO). Fuel Processing Technology 116:94–100.
  • Furuta, S., H. Matsuhashi, and K. Arata. (2004). Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catalysis Communications 12:721–3.
  • Garcia, C. M., S. Teixeira, L. L. Marciniuk, and U. Schuchardt. (2008). Transesterification of soybean oil catalyzed by sulfated zirconia. Bioresource Technology 99(14):6608–13.
  • Garvie, R. C. and M. F. Goss. (1986). Intrinsic size dependence of the phase transformation temperature in zirconia microcrystals. Journal of Materials Science 21(4):1253–57.
  • Hino, M. and K. Arata. 1988. Synthesis of solid superacid of tungsten oxide supported on zirconia and its catalytic action for reactions of butane and pentane. Journal of the Chemical Society, Chemical Communications 18:1259–60.
  • Hayyan, A., F. S. Mjalli, M. A. Hashim, M. Hayyan, I. M. AlNashef, T. Al-Wahaibi, and Y. M. Al-Wahaibi. A solid organic acid catalyst for the pretreatment of low-grade crude palm oil and biodiesel production. International Journal of Green Energy 11(2):129–40.
  • Iglesia, E., D. G. Barton, S. L. Soled, S. Miseo, J. E. Baumgartner, W. E. Gates, G. A. Fuentes, and G. D. Meitzner. (1996). Selective isomerization of alkanes on supported tungsten oxide acids. In Studies in Surface Science and Catalysis, ed. W. Nicholas Delgass Enrique Iglesia Joe W. Hightower and T. Bell Alexis, 533–42. Elsevier.
  • Jacobson, K., R. Gopinath, L. C. Meher, and A. K. Dalai. (2008). Solid acid catalyzed biodiesel production from waste cooking oil. Applied Catalysis B: Environmental 85(1):86–91.
  • Jentoft, F. C., A. Hahn, J. Kröhnert, G. Lorenz, R. E. Jentoft, T. Ressler, U. Wild, R. Schlögl, C. Häßner and K. Köhler. (2004). Incorporation of manganese and iron into the zirconia lattice in promoted sulfated zirconia catalysts. Journal of Catalysis 224(1):124–37.
  • Jitputti, J., B. Kitiyanan, P. Rangsunvigit, K. Bunyakiat, L. Attanatho, and P. Jenvanitpanjakul. (2006). Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal 116(1):61–66.
  • Jogalekar, A. Y., R. G. Jaiswal, and R. V. Jayaram. (1998). Activity of modified SnO2 catalysts for acid-catalysed reactions. Journal of Chemical Technology and Biotechnology 71(3):234–40.
  • Khder, A. S., E. A. El-Sharkawy, S. A. El-Hakam, and A. I. Ahmed. (2008). Surface characterization and catalytic activity of sulfated tin oxide catalyst. Catalysis Communications 9(5):769–77.
  • López, D. E., G. J. Goodwin, Jr, A. B. David, and E. Lotero. (2005). Transesterification of triacetin with methanol on solid acid and base catalysts. Applied Catalysis A: General 295(2):97–105.
  • López, D. E., K. Suwannakarn, D. A. Bruce, and J. G. Goodwin, Jr. (2007). Esterification and transesterification on tungstated zirconia: Effect of calcination temperature. Journal of Catalysis, 247(1):43–50.
  • Lotero, E., Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce, and J. G. Goodwin Jr. (2005). Synthesis of biodiesel via acid catalysis. Industrial and Engineering Chemistry Research 44(14):5353–63.
  • Macht, J., C. D. Baertsch, M. May-Lozano, S. L. Soled, Y. Wang, and E. Iglesia. (2004). Support effects on Brønsted acid site densities and alcohol dehydration turnover rates on tungsten oxide domains. Journal of Catalysis 227(2):479–91.
  • Moser, B. R. (2008). Influence of blending canola, palm, soybean, and sunflower oil methyl esters on fuel properties of biodiesel. Energy and Fuels 22(6):4301–306.
  • Mumtaz, M. W., A. Adnan, Z. Mahmood, H. Mukhtar, M. F. Malik, F. A. Qureshi, and A. Raza. (2012). Biodiesel from waste cooking oil: Optimization of production and monitoring of exhaust emission levels from its combustion in a diesel engine. International Journal of Green Energy 9(7):685–701.
  • Patterson, A. L. (1939). The scherrer formula for X-ray particle size determination. Physical Review 56(10):978–82.
  • Petkovic, L. M., J. R. Bielenberg, and G. Larsen. (1998). A comparative study of n-Pentane and n-Butane isomerization over zirconia-supported tungsten oxide: pulse and flow studies and drifts catalyst characterization. Journal of Catalysis 178(2):533–9.
  • Puna, J. F., M. J. N. Correia, A. P. S. Dias, J. Gomes, and J. Bordado. (2013). Biodiesel production from waste frying oils over lime catalysts. Reaction Kinetics, Mechanisms and Catalysis 109(2):405–15.
  • Ramu, S., N. Lingaiah, B. L. A. P. Devi, R. B. N. Prasad, I. Suryanarayana, and P. S. S. Prasad. (2004). Esterification of palmitic acid with methanol over tungsten oxide supported on zirconia solid acid catalysts: effect of method of preparation of the catalyst on its structural stability and reactivity. Applied Catalysis A: General 276(1):163–8.
  • Rao, K. N., A. Sridhar, A. F. Lee, S. J. Tavener, N. A. Young, and K. Wilson. (2006). Zirconium phosphate supported tungsten oxide solid acid catalysts for the esterification of palmitic acid. Green Chemistry 8(9):790–7.
  • Rashid, U. and F. Anwar. (2008). Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel 87(3):265–73.
  • Rashid, U., J. Ahmad, R. Yunus, M. Ibrahim, H. Masood, and A. M. Syam. (2013). Momordica charantia seed oil methyl esters: Kinetic study and fuel properties. International Journal of Green Energy 11(7):727–40.
  • Santos, J. S., J. A. Dias, S. C. L. Dias, F. A. C. Garcia, J. L. Macedo, F. S. G. Sousa, and L. S. Almeida. (2011). Mixed salts of cesium and ammonium derivatives of 12-tungstophosphoric acid: Synthesis and structural characterization. Applied Catalysis A: General 394(1):138–48.
  • Scheithauer, M., T.-K. Cheung, R. E. Jentoft, R. K. Grasselli, B. C. Gates, and H. Knözinger. (1998). Characterization of WOx/ZrO2 by vibrational spectroscopy and n-Pentane isomerization catalysis. Journal of Catalysis 180(1):1–13.
  • Sivakumar, P., K. S. Parthiban, M. Vinoba, and S. Renganathan. (2012). Optimization of extraction process and kinetics of Sterculia foetida seed oil and its process augmentation for biodiesel production. Industrial and Engineering Chemistry Research 51(26):8992–98.
  • Sultana, S., A. Khalid, M. Ahmad, A. A. Zuhairi, K. T. Lee, M. Zafar, and F. Ul Hassan. (2014). The production, optimization, and characterization of biodiesel from a novel source: Sinapis alba L. International Journal of Green Energy 11(3):280–91.
  • Talebian-Kiakalaieh, A., N. A. S. Amin, and H. Mazaheri. (2013). A review on novel processes of biodiesel production from waste cooking oil. Applied Energy 104:683–710.
  • Tan, K. T., K. T. Lee, and A. R. Mohamed. (2010). A glycerol-free process to produce biodiesel by supercritical methyl acetate technology: An optimization study via response surface methodology. Bioresource Technology 101(3):965–9.
  • Taufiq-Yap, Y. H., H. V. Lee, M. Z. Hussein, and R. Yunus. (2011). Calcium-based mixed oxide catalysts for methanolysis of Jatropha curcas oil to biodiesel. Biomass and Bioenergy 35(2):827–34.
  • Valigi, M., D. Gazzoli, I. Pettiti, G. Mattei, S. Colonna, S. De Rossi, and G. Ferraris. (2002). WOx/ZrO2 catalysts: Part 1. Preparation, bulk and surface characterization. Applied Catalysis A: General 231(1):159–72.
  • Xie, W. and T. Wang. (2013). Biodiesel production from soybean oil transesterification using tin oxide-supported WO3 catalysts. Fuel Processing Technology 109:150–5.
  • Xie, W., H. Wang, and H. Li. (2012). Silica-supported tin oxides as heterogeneous acid catalysts for transesterification of soybean oil with methanol. Industrial and Engineering Chemistry Research 51:225–31.
  • Xie, W. and D. Yang. (2011). Silica-bonded N-propyl sulfamic acid used as a heterogeneous catalyst for transesterification of soybean oil with methanol. Bioresource Technology 102(20):9818–9822.
  • Xie, W. and D. Yang. (2012). Transesterification of soybean oil over WO3 supported on AlPO4 as a solid acid catalyst. Bioresource Technology 119:60–65.
  • Yee, K. F., K. T. Lee, R. Ceccato, and A. Z. Abdullah. (2010). Production of biodiesel from Jatropha curcas L. oil catalyzed by SO42–/ZrO2 catalyst: Effect of interaction between process variables. Bioresource Technology 102(5):4285–4289.
  • Zheng, S., M. Kates, M. A. Dube, and D. D. McLean. (2006). Acid-catalyzed production of biodiesel from waste frying oil. Biomass and Bioenergy 30(3):267–272.
  • Zheng, Y, Z. Pan, and X. Wang. (2013). Advances in photocatalysis in China. Chinese Journal of Catalysis 34(3):524–535.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.