2,564
Views
87
CrossRef citations to date
0
Altmetric
Review Article

An overview on biogas generation from anaerobic digestion of food waste

&

References

  • Agunwamba, J. C. 2001. Waste: Engineering and Management Tools, vol. 572. Nigeria: Immaculate Publications Ltd.
  • Alvarez, R. and G. Lidén. 2008. Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste. Renewable Energy 33(4):726–34.
  • Amy, G. and Y. Comeau. 2008. Biological Wastewater Treatment Principles, Modelling and Design. London: IWA.
  • APHA. 1998. Standard Methods for the Examination of Water and Wastewater. 20th edn. Washington, DC: American Public Health Association.
  • Balat, M. and H. Balat. 2009. Biogas as a renewable energy source—A review. Energy Sources Part A: Recovery, Utilization & Environmental Effects 31(14):1280–93.
  • Banks, C. J., A. M. Salter, S. Heaven, and K. Riley. 2011. Energetic and environmental benefits of co-digestion of food waste and cattle slurry: A preliminary assessment. Resources, Conservation and Recycling 56(1):71–79.
  • Bouallagui, H., R. B. Cheikh and L. Marouani. 2003. Mesophilic biogas production from fruit and vegetable waste in a tubular digester. Bioresource Technology 86(1):85–89.
  • Bove, R. and P. Lunghi. 2006. Electric power generation from landfill gas using traditional and innovative technologies. Energy Conversion and Management, 47(11–12):1391–401.
  • Buekens, A. 2005. Energy recovery from residual waste by means of anaerobic digestion technologies. The Future of Residual Waste Management in Europe Conference, Luxemburg 15 pp.
  • Cecchi, F., P. Pavan, and A. Musacco. 1992. Comparison between thermophilic and mesophilic anaerobic digestion of sewage sludge coming from urban wastewater plants. Ingegneria Sanitaria Ambientale 40:25–32.
  • Chae, K. J., A. Jang, S. K. Yim, and I. S. Kim. 2008. The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresource Technology 99(1):1–6.
  • Chen, Y., G. Yang, S. Sweeney, and Y. Feng. 2010. Household biogas use in rural China: A study of opportunities and constraints. Renewable and Sustainable Energy Reviews 14(1):545–49.
  • Cho, J. K., S. C. Park, and H. N. Chang. 1995. Biochemical methane potential and solid state anaerobic digestion of Korean food wastes. Bioresource Technology 52:245–53.
  • Cirne, D. G., X. Paloumet, L. Björnsson, and M. M. Alves. 2007. Anaerobic digestion of lipid-rich waste—Effects of lipid concentration. Renewable Energy 32(6):965–75.
  • Curry, N. and P. Pillay. 2012. Biogas prediction and design of a food waste to energy system for the urban environment. Renewable Energy 41:200–09.
  • Demirel, B. and O. Yenigün. 2002. Two-phase anaerobic digestion processes: a review. Journal of Chemical Technology & Biotechnology 77(7):743–55.
  • Deublein, D. and A. Steinhauser. 2008. Biogas from Waste and Renewable Resources: An Introduction. Weinheim, Germany: John Wiley & Sons, Inc.
  • Eckenfelder, W. W. 2000. Water, Pollution. Kirk-Othmer Encyclopedia of Chemical Technology. Hoboken, NJ: John Wiley & Sons, Inc.
  • Engelhart, M., M. Krüger, and J. K. N. Dichtl. 1999. Effect of disintegration on anaerobic degradation of sewage excess sludge in downflow stationary fixed film digesters. Proceedings of the Second International Symposium on Anaerobicdigestion of Solid Wastes, Barcelona, Spain, 153–60.
  • EPA. 2012. Organics: Anaerobic Digestion. website: http://www.epa.gov/region9/organics/ad/, accessed on Jul. 20, 2012.
  • EPD. 2011. Hong Kong’s Environment: Waste. (updated 20/07/ 2011). website: http://www.epd.gov.hk/epd/english/environmentinhk/waste/waste_maincontent.html, accessed on Mar. 25, 2012.
  • EPD. 2012a. Food Waste Management in HK. Food Waste Recycling Partnership Scheme website: http://www.foodwaste.org.hk/Eng_index.htm, accessed Feb. 22, 2012.
  • EPD. 2012b. Organic Waste Treatment Facilities. Waste Problems and Solutions (updated 17/01/2012). website: http://www.epd.gov.hk/epd/english/environmentinhk/waste/prob_solutions/WFdev_OWTF.html, accessed on Feb. 22, 2012.
  • EUBIA. 2012. European Biomass Association ‘Conversion Routes to Bioenergy’. website: http://www.eubia.org/index.php/about-biomass/conversion-routes, accessed on Feb. 20, 2012.
  • EurObserver. 2008. The state of renewable energies in Europe. Report. 47–51.
  • Fang, L. 1999. The present situation and solution of municipal solid wastes in China. Science & Technology Daily, December 19.
  • Fernández, B., P. Porrier, and R. Chamy. 2001. Effect of inoculum-substrate ratio on the start-up of solid waste anaerobic digesters. Water Science and Technology 44(4):103–08.
  • Fernández, A., A. Sánchez, and X. Font. 2005. Anaerobic co-digestion of a simulated organic fraction of municipal solid wastes and fats of animal and vegetable origin. Biochemical Engineering Journal 26(1):22–28.
  • Ferrer, I., M. Garfı´, and E. Uggetti. 2011. Biogas production in low-cost household digesters at the Peruvian Andes. Biomass and Bioenergy 35:1668–74.
  • Fontenot, Q., C. Bonvillain, M. Kilgen, and R. Boopathy. 2007. Effects of temperature, salinity, and carbon: nitrogen ratio on sequencing batch reactor treating shrimp aquaculture wastewater. Bioresource Technology 98(9):1700–03.
  • Gallert, C. and J. Winter. 1997. Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: effect of ammonia on glucose degradation and methane production. Applied Microbiology and Biotechnology 48(3):405–10.
  • Gerardi, M. H. 2003. The Microbiology of Anaerobic Digesters. Canada: John Wiley & Sons, Inc.
  • Golueke, C. G. 2000. Bioremediation: Principles and practice. Waste Management and Research 18(4):404–04.
  • Halalsheh, M., Z. Sawajneh, M. Zu’bi, G. Zeeman, J. B. van Lier, M. Fayyad, and G. Lettinga. 2005. Treatment of strong domestic sewage in a 96 m3 UASB reactor operated at ambient temperatures: two-stage versus single-stage reactor. Bioresource Technology 96(5):577–85.
  • Han, S. K. and H. S. Shin. 2004. Biohydrogen production by anaerobic fermentation of food waste. Hydrogen Energy 29:569–77.
  • Hartmann, H. and B. K. Ahring. 2005. The future of biogas production. Risø International Energy Conference on Technologies for Sustainable Energy Development in the Long Term (Riso-R-1517(EN), Roskilde, Denmark), 163–72.
  • Hashimoto, A. G. 1989. Effect of inoculum/substrate ratio on methane yield and production rate from straw. Biological Wastes 28:247–55.
  • Husain, A. 1998. Mathematical models of the kinetics of anaerobic digestion—a selected review. Biomass and Bioenergy 14(5–6):561–71.
  • Igoni, A. H., M. J. Ayotamuno, C. L. Eze, S. O. T. Ogaji, and S. D. Probert. 2008. Designs of anaerobic digesters for producing biogas from municipal solid-waste. Applied Energy 85(6):430–38.
  • Special Report on Renewable Energy and Climate Change Mitigation [online text], Website: http://srren.ipcc-wg3.de/.
  • Itodo, I. N., G. E. Agyo, and P. Yusuf. 2007. Performance evaluation of a biogas stove for cooking in Nigeria. Journal of Energy in Southern Africa 18(3):14–18.
  • IUT-Singapore-Pte. 2011. Food waste to renewable energy grid connected power project. The SINGAPORE ENGINEER, Jan 2011.
  • Izumi, K., Y. K. Okishio, N. Nagao, C. Niwa, S. Yamamoto, and T. Toda. 2010. Effects of particle size on anaerobic digestion of food waste. International Biodeterioration & Biodegradation 64(7):601–08.
  • Jain, S. R. and B. Mattiasson. 1998. Acclimatization of methanogenic consortia for low pH biomethanation process. Biotechnology Letters 20(8):771–75.
  • Karim, K., K. T. Klasson, R. Hoffmann, S. R. Drescher, D. W. DePaoli, and M. H. Al-Dahhan. 2005. Anaerobic digestion of animal waste: Effect of mixing. Bioresource Technology 96(14):1607–12.
  • Kaygusuz, K. 2009. Biomass as a renewable energy source for sustainable fuels. Energy Sources Part A: Recovery, Utilization & Environmental Effects 31(6):535–45.
  • Kim, I. S., D. H. Kim, and S. H. Hyun. 2000. Effect of particle size and sodium ion concentration on anaerobic thermophilic food waste digestion. Water Science and Technology 41(3):67–73.
  • Kim, H. W., J. Y. Nam, and H. S. Shin. 2011. A comparison study on the high-rate co-digestion of sewage sludge and food waste using a temperature-phased anaerobic sequencing batch reactor system. Bioresource Technology 102(15):7272–79.
  • Kim, J., C. Park, T. H. Kim, M. Lee, S. Kim, and S. W. Kim. 2003. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. Journal of Bioscience and Bioengineering 95(3):271–75.
  • Kim, M. D., M. Song, M. Jo, S. G. Shin, and J. H. Khim. 2010. Growth condition and bacterial community for maximum hydrolysis of suspended organic materials in anaerobic digestion of food waste-recycling wastewater. Applied Microbiology & Biotechnology 85(5):1611–18.
  • Komemoto, K., Y. G. Lim, N. Nagao, Y. Onoue, and C. Niwa. 2009. Effect of temperature on VFA’s and biogas production in anaerobic solubilization of food waste. Waste Management 29(12):2950–55.
  • Kurchania, A. K., Panwar, N. L., and S. D. Pagar. 2009. Design and performance evaluation of biogas stove for community cooking application. International Journal of Sustainable Energy 29(2):116–23.
  • Lansing, S., J. F. Martin, R. B. Botero, and T. N. Da Silva. 2010. Methane production in low-cost, Unheated, plug-flow digesters treating swine manure and used cooking grease. Bioresource Technology 101:4362–70.
  • Lee, S. P., J. I. Kim, and S. Kauh. 1995. Temperature compensation of hot-wire anemometer with photoconductive cell. Experiments in Fluids 19(5):362–65.
  • Li, Y. Y., and T. Kobayashi. 2010. Applications and new developments of biogas technology in Japan. In: Environmental Anaerobic Technology, H. H. P. Fang (ed.). London: Imperial College Press. pp. 33–58.
  • Li, Y. Y. and T. Noike. 1992. Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment. Water Science and Technology 26(3–4):857–66.
  • Li, Y. Y., H. Sasaki, K. Yamashita, K. Seki, and I. Kamigochi. 2002. High-rate methane fermentation of lipid-rich food wastes by a high-solid Co-digestion process. Water Science and Technology 45(12):143–50.
  • Liu, D., D. Liu, R. J. Zeng, and I. Angelidaki. 2006. Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Research 40:2230–36.
  • Liu, C. F., X. Yuan, G. Zeng, W. Li, and J. Li. 2008. Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresource Technology 99:882–88.
  • Liu, D., R. J. Zeng, and I. Angelidaki. 2008. Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature. Biotechnology & Bioengineering 100:1108–14.
  • Liu, G., R. Zhang, H. M. El-Mashad, and R. Dong. 2009. Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresource Technology 100:5103–08.
  • Liu, G., R. Zhang, H. M. El-Mashad, and R. Dong. 2011. Biogasification of Green and Food Wastes Using Anaerobic-Phased Solids Digester System. Applied Biochemistry and Biotechnology 168:78–90
  • Madigan, M. T., J. H. Martinko, and J. Parker. 1997. Brock-Biology of Microorganisms. Prentice Hall International Inc.
  • Mata-Alvarez, J., S. Macé, and P. Llabrés. 2000. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology 74(1):3–16.
  • Matteson, G. C. and B. M. Jenkins. 2007. Food and processing residues in California: Resource assessment and potential for power generation. Bioresource Technology 98(16):3098–105.
  • Miller, P. A. 2003. Waste Sites as Biological Reactors: Characterization and Modeling, ed. Nicholas L. Clesceri, Boca Raton, FL, Lewis Publishers, 383 pp.
  • Mital, T. 1997. Biogas System Policies Progress and Prospects. New Delhi, India: New Age International (P) Ltd., 278.
  • Mshandete, A., L. Björnsson, A. K. Kivaisi, M. S. T. Rubindamayugi, and Bo, M. 2006. Effect of particle size on biogas yield from sisal fibre waste. Renewable Energy 31(14):2385–92.
  • Mudrack, K. and S. Kunst. 1991, Biologie der Abwasserreinigung. 3 edition, Stuttgart, Germany: Gustav Fischer Verlag.
  • Murto, M., L. Björnsson, and B. Mattiasson. 2004. Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure. Journal of Environmental Management 70(2):101–07.
  • Nayono, S. E., C. Gallert, and J. Winter. 2009. Foodwaste as a co-substrate in a fed-batch anaerobic biowaste digester for constant biogas supply. Water Science and Technology 59(6):1169–77.
  • Neves, L., R. Oliveira, and M. M. Alves. 2004. Influence of inoculum activity on the bio-methanization of a kitchen waste under different waste/inoculum ratios. Process Biochemistry 39(12):2019–24.
  • Parawira, W., M. Murtoa, J. S. Read, and B. Mattiasson. 2005. Profile of hydrolases and biogas production during two-stage mesophilic anaerobic digestion of solid potato waste. Process Biochemistry 40(9):2945–52.
  • Pavlostathis, S. G. and E. Giraldo-Gomez. 1991. Kinetics of anaerobic treatment. Water Science and Technology 25(8):35–59.
  • Puñal, A., M. Trevisan, A. Rozzi, and J. M. Lema. 2000. Influence of C:N ratio on the start-up of up-flow anaerobic filter reactors. Water Research 34(9):2614–19.
  • Raposo, F., R. Borja, M. A. Martín, and A. Martín. 2009. Influence of inoculum–substrate ratio on the anaerobic digestion of sunflower oil cake in batch mode: Process stability and kinetic evaluation. Chemical Engineering Journal 149(1–3):70–77.
  • Shimizu, T., K. Iida, Y. Iwamoto, and Y. Yanagihara. 1992. Biological activity of chemically synthesized core sugar linked lipid a analog, heptose-(α1 → 5)-2-keto-3-deoxyoctonic acid-(α2 → 6)-2,3-diacyloxyacylglucosamine-4- phosphate. International Journal of Immunopharmacology 14(2):221–26.
  • Siegert, I. and C, Banks. 2005. The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry 40(11):3412–18.
  • Smith, L. C., D. J. Elliot, and A. James. 1996. Mixing in upflow anaerobic filters and its influence on performance and scale-up. Water Research 30(12):3061–73.
  • Sosnowski, P., A. Wieczorek, and S. Ledakowicz. 2003. Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Advances in Environmental Research 7(3):609–16.
  • Taherzadeh, M. and K. Karimi. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences 9(9):1621–51.
  • Veeken, A., et al. 2000. Effect of pH and VFA on hydrolysis of organic solid waste. Environmental Engineering 1076–81.
  • Wang, J. Y., H. L. Xu, and J. H. Tay. 2002. A hybrid two-phase system for anaerobic digestion of food waste. Water Science and Technology 45(12):159–65.
  • Wang, J. Y., H. L. Xu, H. Zhang, and J. H. Tay. 2003. Semi-continuous anaerobic digestion of food waste using a hybrid anaerobic solid-liquid bioreactor. Water Science and Technology 48(4):169–74.
  • Wang, Z. and C. J. Banks. 2000. Accelerated hydrolysis and acidification of municipal solid waste (MSW) in a flushing anaerobic bio-reactor using treated leachate recirculation. Waste Management and Research 18(3):215–23.
  • Wang, J. Y., H. Zhang, O. Stabnikova, and J. H. Tay. 2005. Comparison of Lab-Scale and Pilot-Scale Hybrid Anaerobic Solid-Liquid Systems Operated in Batch and Semi-Continuous Modes. Process Biochemistry 40:3580–86.
  • Ward, A. J., P. J. Hobbs, P. J. Holliman, and D. L. Jones. 2008. Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology 99(17):7928–40.
  • Weiland, P. 2010. Biogas production: current state and perspectives. Applied Microbiology & Biotechnology 85(4):849–60.
  • Weiland, P. and A. Rozzi. 1991. The start-up, operation and monitoring of high-rate anaerobic treatment systems: Discusser’s report. Water Science and Technology 24(8):257–77.
  • Wu, C. Z., H. Huang, S. P. Zheng, and X. L. Yin. 2002. An economic analysis of biomass gasification and power generation in China. Bioresource Technology 83(1):65–70.
  • Xu, S.-Y. et al. 2012. Effect of inoculum to substrate ratio on the hydrolysis and acidification of food waste in leach bed reactor. Bioresource Technology 126:425–430.
  • Xu, H. W., J. Y. Wang, and J. H. Tay. 2002a. Biotechnology Letters 24:757–61.
  • Xu, H. L., J. Y. Wang, and J. H. Tay. 2002b. A hybrid anaerobic solid-liquid bioreactor for food waste digestion. Biotechnology Letters 24(10):757–61.
  • Yadvika, S., T. R. Sreekrishnan, S. Kohli, and V. Rana. 2004. Enhancement of biogas production from solid substrates using different techniques—-A review. Bioresource Technology 95(1):1–10.
  • Zhang, B, L. L. Zhang, S. C. Zhang, and H. Z. Shi. 2005. The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environmental Technology 26(3):329–40.
  • Zhang, R., et al. 2007. Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology 98(4):929–35.
  • Zhang, L., Y. W. Lee, and D. Jahng. 2011. Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresource Technology 102(8):5048–59.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.