230
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Modeling and Performance Evaluation of Parabolic Trough Solar Cavity-Type Receivers

, , &

References

  • Bader, R., M. Barbato, A. Pedretti, and A., Steinfeld. 2010. An air-based cavity-receiver for solar trough concentrators. Journal of Solar Energy Engineering 132(3):031017.
  • Barra, O. A. and L. Franceschi. 1982. The parabolic trough plants using black body receivers: Experimental and theoretical analyses. Solar Energy 28(2):163–71.
  • Boyd, D. A., R. Gajewski, and R. Swift. 1976. A cylindrical blackbody solar energy receiver. Solar Energy 18(5):395–401.
  • Chou, Q. L. and G. Xinshi. 1996. Comparison of thermal properties of cavity-type absorbers and vacuum tube absorbers. Journal of Engineering for Thermal Energy and Power 11(5):273–77. ( in Chineses)
  • Fiedler, F., C. Bales, and T. Persson. 2007. Optimisation method for solar heating systems in combination with pellet boilers/stoves. International Journal of Green Energy 4(3):325–37.
  • Horta, P., J. C. C. Henriques, and M. Collares-Pereira. 2012. Impact of different internal convection control strategies in a non-evacuated CPC collector performance. Solar Energy 86(5):1232–44.
  • Juds, S. 1988. Photoelectric Sensors and Controls: Selection and Application New York: CRC Press.
  • Li, X. 1992. Four-cone blackbody cavity. Journal of Applied Optics 13(1):39–41. ( in Chineses)
  • Li, X. 1994a. Five-cone blackbody cavity. Journal of Applied Optics 15(6):27–31. ( in Chineses)
  • Li, X. 1994b. Two-cone blackbody cavity. Journal of Applied Optics 15(3):35–39. ( in Chineses)
  • Li, X. and Z. Wang. 1996. Quality simple black-body model. Journal of Applied Optics 17(5):31–36. ( in Chineses)
  • Luo, H., R. Z. Wang, and Y. J. Dai. 2010. Optimum matching of heat source temperature to a solar adsorption air-conditioning system for maximum solar cooling coefficient of performance. International Journal of Green Energy 7(1):91–102.
  • Machinda, G. T., S. P. Chowdhury, S. Chowdhury, S. Kibaara, and R. Arscott. 2011. Concentrating Solar Thermal Power Technologies: A Review. Paper presented at the India Conference (INDICON), 2011 Annual IEEE.
  • Nikulshina, V., M. Halmann, and A. Steinfeld. 2009. Coproduction of syngas and lime by combined CaCO3-calcination and CH4-reforming using a particle-flow reactor driven by concentrated solar radiation. Energy & Fuels 23(12):6207–12.
  • Price, H., M. J. Hale, R. Mahoney, C. Gummo, R. Fimbres, and R. Cipriani. 2004. Developments in High Temperature Parabolic Trough Receiver Technology. Paper presented at the ASME 2004 International Solar Energy Conference. Rodat, S., S. Abanades, and G. Flamant. 2009. High-temperature solar methane dissociation in a multitubular cavity-type reactor in the temperature range 1823−2073 K. Energy & Fuels 23(5):2666–74.
  • Ryu, S. and T. Seo. 2000. Estimation of heat losses from the receivers for solar energy collecting system of Korea Institute of Energy Research. KSME International Journal 14(12):1403–11.
  • Sawhney, R. L. and N. K. Bansal. 1984. Steady state thermal analysis of an evacuated tubular collector with a CPC booster. Solar & Wind Technology 1(4):237–44.
  • ShiShunxiang, H. Z. and L. Jinsong. 2000. Physical Optics and Applied Optics. Xi’an, China: Xidian University Press.
  • Umrov, I., A. Fattakhov, A. Umarov, et al. 1983. Heat loss in a cavity-type solar collector. Applied Solar Energy 19(3):35–38.
  • van Voorthuysen, Evert H. du Marchie.2005. The promising perspective of concentrating solar power (CSP). 2005 International Conference on Future Power Systems, Amsterdam, November 18.
  • Winskell, P. L. and S. T. Hsu. 1959. Theory and design of a mechanical blackbody for solar radiation. Solar Energy 3(2):1–8.
  • Yang, S. and T. Wenquan. 2006. Heat Transfer (4th ed.). Beijing, China: Higher Education Publisher.
  • Zhai, H., Y. Dai, J. Wu, and R. Wang. 2009. Study on Trough Receiver for Linear Concentrating Solar Collector. Paper presented at the Proceedings of ISES World Congress 2007 (Vol. I–Vol. V).
  • Zhang, Q., X. Li, Z. Wang, C. Chang, and H. Liu. 2013. Experimental and theoretical analysis of a dynamic test method for molten salt cavity receiver. Renewable Energy 50:214–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.