411
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Efficient Anaerobic Co-Digestion of Municipal Food Waste and Kitchen Wastewater for Bio-Hydrogen Production

, &

References

  • Akil, K. and S. Jayanthi. 2014. The biohydrogen potential of distillery wastewater by dark fermentation in an anaerobic sequencing batch reactor. International Journal of Green Energy 11:28–39.
  • APHA. 2005. Standard Methods for the Examination of Water and Wastewater, 25th ed. Washington, DC, USA: American Public Health Association.
  • Azbar, N., Dokgöz, F. T., Keskin, T., Eltem, R., Korkmaz, K. S., Gezgin, Y., Akbal, Z., Öncel, S., Dalay, M. C., Gönen, C., and F. Tutuk. 2009a. Comparative evaluation of bio-hydrogen production from cheese whey wastewater under thermophilic and mesophilic anaerobic conditions. International Journal of Green Energy 6:192–200.
  • Azbar, N., Dokgöz, F. T. C. and Z. Peker. 2009b. Optimization of basal medium for fermentative hydrogen production from Cheese Whey Wastewater. International Journal of Green Energy 6:371–80.
  • Bell, J. and C. A. Buckey. 2003. Treatment of a textile dye in the anaerobic baffled reactor. Water SA 29(2):129–34.
  • Breure, A. M., K. A. Mooijman, and J. G. van Andel. 1986. Protein degradation in anaerobic digestion: influence of volatile fatty acids and carbohydrates on hydrolysis and acidogenic fermentation of gelatine. Applied Microbiology and Biotechnology. 24:426–31.
  • Cheng, S. S., M. D. Bai, S. M. Chang, K. L. Wu, W. C. Chen, and W. C. Chen. 2000. Studies on the feasibility of hydrogen production hydrolyzed sludge by anaerobic microorganisms. The Twenty-fifth Wastewater Technology Conference, Yunlin, Taiwan ( in Chinese).
  • Dong-Hoon, K., K. Sang-Hyoun, K. Ku-Yong, and S. Hang-Sik. 2010. Experience of a pilot-scale hydrogen-producing anaerobic sequencing batch reactor (ASBR) treating food waste. International Journal of Hydrogen Energy 35:1590–94.
  • Dubois, M., A. Gilles, K. Hamilton, A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugar sand related substances. Analytical Chemistry 8:350–66.
  • Eva, E., A. Karina, H. Mogens, and L. Anna. 2002. Characteristics of grey wastewater. Urban Water 4:85–104.
  • Fakhru’l-Razi, A., Yassin, A. A. A., Lyuke, S. E., Ngan, M. A., and M. Morimoto. 2005. Bio-hydrogen synthesis from wastewater by anaerobic fermentation using microflora. International Journal of Green Energy 2:387–96
  • Fan, Y. T., G. S. Zhang, X. Y. Guo, Y. Xing, and M. H. Fan. 2006. Biohydrogen production from beer lees biomass by cow dung compost. Biomass and Bioenergy 30:493–6.
  • Han, H. K. and H. S. Shin. 2004. Performance of an innovative two-stage process converting food waste to hydrogen and methane. Journal of the Air & Waste Management Association 54:242–9.
  • Hariklia, N. G., V. S. Ioannis, and K. A. Birgitte. 2006. Biological hydrogen production in suspended and attached growth anaerobic reactor systems. International Journal of Hydrogen Energy 31:1164–75.
  • Hisham, H., N. M. George, E. N. Hesham, E. Elsayed, and B. Bita. 2010. Effect of organic loading on a novel hydrogen bioreactor. International Journal of Hydrogen Energy 35:81–92
  • Kalil, M. S., H. S. S. Alshiyab, and W. M. W. Yusoff. 2009. Media improvement for hydrogen production using Clostridium acetobutylicum NCIMB 13357. American Journal of Applied Sciences 6:1158–68.
  • Kapdan, L. K. and F. Kargi. 2006. Bio-hydrogen production from waste materials. Enzyme and Microbial Technology 38:569–82.
  • Kim, M. S. and D. Y. Lee. 2010. Fermentative hydrogen production from tofu-processing waste and anaerobic digester sludge using microbial consortium. Bioresource Technology 101:248–52.
  • Kim, S. H., S. K. Han, and H. S. Shin. 2004. Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. International Journal of Hydrogen Energy 29:1607–16.
  • Kyazze, G., N. Martinez-Perez, R. Dinsdale, G. C. Premier, F. R. Hawkes, and A. J. Guwy. 2006. Influence of substrate concentration on the stability and yield of continuous biohydrogen production. Biotechnology and Bioengineering 93(5):971–9.
  • Lay, J. J., K. S. Fan, J. I. Chang, and C. H. Ku. 2003. Influence of chemical nature of organic wastes on their conversion to hydrogen by heat shock digested sludge. International Journal of Hydrogen Energy 28:1361–67.
  • Lay, J. J., Y. J. Lee, and T. Noike. 1999. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Research 33(11):2579–86.
  • Lin, C. Y. and C. H. Lay. 2004. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microfora. International Journal of Hydrogen Energy 29:41–5.
  • McInerney, M. J. 1988. ``Anaerobic hydrolysis and fermentation of fats and proteins.’’ In Biology of Anaerobic Microorganisms, ed. A. J. B. Zehnder. New York: Wiley, pp. 373–16.
  • Ming, L., Z. Youcai, G. Qiang, Q. Xiaoqing, and N. Dongjie. 2008. Bio-hydrogen production from food waste and sewage sludge in the presence of aged refuse excavated from refuse landfill. Renew Energy 33:2573–9.
  • Misi, S. N. and C. F. Forster. 2001. Batch co-digestion of multi-component agro-wastes. Bioresource Technology 80(1):19–28.
  • Mizuno, O., T. Ohara, M. Shinya, and T. Noike. 2000. Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora. Water Science and Technology 42:345–50.
  • Mongi, F., C. Edward, G. Gwang-Hoon, H. William, and A. Amer. 2005a. Influence of initial pH on hydrogen production from cheese whey. Journal of Biotechnology 120:402–409
  • Mongi, F., C. Edward, H. William, G. GwangHoon, and A. Almadidy. 2005b. Influence of culture parameters on biological hydrogen production by Clostridium saccharoperbutylacetonicum ATCC. World Journal of Microbiology & Biotechnology 21:855–62.
  • Mshandete, A., A. Kivaisi, M. Rubindamayugi, and B. Mattiasson. 2004. Anaerobic batch co-digestion of sisal pulp and fish wastes. Bioresource Technology 95(1):19–24.
  • O-Thong, S., P. Prasertsan, N. Intrasungkha, S. Dhamwichukorn, and N. K. Birkeland. 2008. Optimization of simultaneous thermophilic fermentative hydrogen production and COD reduction from palm oil mill effluent by Thermoanaerobacterium-rich sludge. International Journal of Hydrogen Energy 33:1221–31.
  • Reyhani, S. K. and H. Zilouei. 2013. Enhanced biohydrogen production from wastewater and the influence of operating parameters. International Journal of Green Energy 10:321–36.
  • Shin, H. K., S. H. Kim, and B. C. Paik. 2003. Characteristics of hydrogen production from food waste and waste activated sludge. Journal of Water and Environment Technology 2:177–87.
  • Sreela-or, C., P. Plangklang, T. Imai, and A. Reungsang. 2011. Co-digestion of food waste and sludge for hydrogen production by anaerobic mixed cultures: Statistical key factors optimization. International Journal of hydrogen Energy 36:14227–37.
  • Sun-Kee, H., K. Sang-Hyoun, and S. Hang-Sik. 2005. UASB treatment of wastewater with VFA and alcohol generated during hydrogen fermentation of food waste. Process Biochemistry 40:2897–905.
  • Tawfik, A., A. Salem, and M. El-Qelish. 2011a. Two stage anaerobic baffled reactors for bio-hydrogen production from municipal food waste. Bioresource Technology 102:8723–26.
  • Tawfik, A., A. Salem, M. El-Qelish, A. M. Abdullah, and E. Abou Taleb. 2011b. Feasibility of biological hydrogen production from kitchen waste via anaerobic baffled reactor (ABR). International Journal of Sustainable Water and Environmental Systems 2(½):117–22.
  • Tawfik, A., R. Abdel Wahab, A. Al-Asmer, and F. Matary. 2011c. Effect of hydraulic retention time on the performance of down-flow hanging sponge system treating grey wastewater. Bioprocess and Biosystems Engineering 34:767–76
  • Tawfik, A. and M. El-Qelish. 2012. Continuous hydrogen production from co-digestion of municipal food waste and kitchen wastewater in mesophilic anaerobic baffled reactor. Bioresouce Technology Journal 114:270–74.
  • Uyanik, S., P. J. Sallis, and G. K. Anderson. 2002. The effect of polymer addition on granulation in an anaerobic baffled reactor (ABR). Part 2: Compartmentalization of bacterial populations. Water Research 36:944–55.
  • Van Ginkel, S. W. and B. Logan. 2005. Increased biological hydrogen production with reduced organic loading. Water Research 39(16):3819–26.
  • Wongtanet, J., Sang, B., Lee, S., and D. Pak. 2007. Biohydrogen production by fermentative Process in continuous stirred-tank reactor. International Journal of Green Energy 4:385–95.
  • Wu, J. H. and C. Y. Lin. 2004. Biohydrogen production by mesophilic fermentation of food wastewater. Water Science and Technology 49:223–28.
  • Yokoi, H., A. Saitsu, H. Uchida, J. Hirose, S. Hayashi, and Y. Takasaki. 2001. Microbial hydrogen production from sweet potato starch residue. Journal of Bioscience and Bioengineering 91:58–63.
  • Zhang, M. L., Y. T. Fan, Y. Xing, C. M. Pan, G. S. Zhang, and J. J. Lay. 2007. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31:250–54.
  • Zhang, P., Y. G. Chen, T. Y. Huang, and Q. Zhou. 2009. Waste activated sludge hydrolysis and short-chain fatty acids accumulation in the presence of SDBS in semi continuous flow reactors: effect of solids retention time and temperature. Chemical Engineering Journal 148:348–53.
  • Zhang, R., H. M. El-Mashad, K. Hartman, F. Wang, G. Liu, C. Choate, and P. Gamble. 2006. Characterization of food waste as feed stock for anaerobic digestion. Bioresource Technology 98(4):929–35.
  • Zhang, T, H. Liu, H. H., and P. Fang. 2003. Biohydrogen production from starch in wastewater under thermophilic condition. Journal of Environmental Management 69:149–56.
  • Zhu, H. G., W. Parker, R. Basnar, A. Proracki, P. Falletta, M. Beland, and P. Seto. 2008. Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges. International Journal of Hydrogen Energy 33:3651–59.
  • Zong, W., Y. Ruisong, Z. Peng, F. Meizhen, and Z. Zhihua. 2009. Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation. Biomass and Bioenergy 33:1458–63.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.