457
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Shift to continuous operation of an air-cathode microbial fuel cell long-running in fed-batch mode boosts power generation

, , , , , & show all

References

  • Ahn, Y. and B. E. Logan. 2012. Altering anode thickness to improve power production in microbial fuel cells with different electrode distances. Energy Fuel 27:271–6.
  • Alvarez-Gallego, Y., X. Dominguez-Benetton, D. Pant, L. Diels, K. Vanbroekhoven, I. Genné, and P. Vermeiren. 2012. Development of gas diffusion electrodes for cogeneration of chemicals and electricity. Electrochimica Acta 82:415–26.
  • Bond, D. R. and D. R. Lovley. 2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Applied and Environmental Microbiology 71:2186–9.
  • Call, D. F., M. D. Merrill, and B. E. Logan. 2009. High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environmental Science and Technology 43:2179–83.
  • Chan, Y. J., M. F. Chong, C. L. Law, and D. G. Hassell. 2009. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal 155:1–18.
  • Crespo, G. A., S. Macho, and F. X. Rius. 2008. Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Analytical Chemistry 80:1316–22.
  • Deepika, J., S Meignanalakshmi, and W. R. Thilagaraj. 2013. Optimization of parameters for the increased electricity production by the microbial fuel cell using rumen fluid. International Journal of Green Energy 12:333–338.
  • Dominguez-Benetton, X., S. Sevda, K. Vanbroekhoven, and D. Pant. 2012. The accurate use of impedance analysis for the study of microbial electrochemical systems. Chemical Society Reviews 41:7228–46.
  • Du, Z., H. Li, and T. Gu. 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances 25:464–82.
  • ElMekawy, A., L. Diels, H. Dewever, and D. Pant. 2013a. Valorization of cereal based biorefinery byproducts: Reality and expectations. Environmental Science and Technology 47:9014−27.
  • ElMekawy, A., H. M. Hegab, X. Dominguez-Benetton, and D. Pant. 2013b. Internal resistance of microfluidic microbial fuel cell: Challenges and potential opportunities. Bioresource Technology 142:672–82.
  • Fan, Y., E. Sharbrough, and H. Liu. 2008. Quantification of the internal resistance distribution of microbial fuel cells. Environmental Science and Technology 42:8101–7.
  • Franks, A. E., N. Malvankar, and K. P. Nevin. 2010. Bacterial biofilms: The powerhouse of a microbial fuel cell. Biofuels 1:589–604.
  • Gupta, D. K., H. G. Huang, X. E. Yang, B. H. N. Razafindrabe, and M. Inouhe. 2010. The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. Journal of Hazardous Materials 177:437–44.
  • Ieropoulos, I., J. Winfield, and J. Greenman. 2010. Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresource Technology 101:3520–5.
  • Li, W. W., G. P. Sheng, X. W. Liu, and H. Q. Yu. 2011. Recent advances in the separators for microbial fuel cells. Bioresource Technology 102:244–52.
  • Liu, H., S. Cheng, and B. E. Logan. 2005. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science and Technology 39:5488–93.
  • Logan, B. E., B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, and K. Rabaey.2006. Microbial fuel cells: Methodology and technology. Environmental Science and Technology 40:5181–92.
  • Lovley, D. R. 2008. The microbe electric: Conversion of organic matter to electricity. Current Opinion in Biotechnology 19:564–71.
  • Malvankar, N. S., M. T. Tuominen, and D. R. Lovley. 2012. Biofilm conductivity is a decisive variable for high-current-density Geobacter sulfurreducens microbial fuel cells. Energy and Environmental Science 5:5790–7.
  • Manohar, A. K. and F. Mansfeld. 2009. The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions. Electrochimica Acta 54:1664–70.
  • Mohanakrishna, G., S. Venkata Mohan, and P. N. Sarma. 2010. Bio-electrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation. Journal of Hazardous Materials 177:487–94.
  • Muthukumar, M. and T. Sangeetha. 2014. The harnessing of bioenergy from a dual chambered microbial fuel cell (Mfc) employing sago-processing wastewater as catholyte. International Journal of Green Energy 11:161–72.
  • Nielsen, M. E., C. E. Reimers, and H. A. Stecher. 2007. Enhanced power from chambered benthic microbial fuel cells. Environmental Science and Technology 41:7895–900.
  • Oh, S. E. and B. E. Logan. 2006. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Applied Microbiology and Biotechnology 70:162–9.
  • Pant, D., D. Arslan, G. Van Bogaert, Y. Alvarez Gallego, H. De Wever, L. Diels, and K. Vanbroekhoven. 2013. Integrated conversion of food waste diluted with sewage into volatile fatty acids through fermentation and electricity through a fuel cell. Environmental Technology. 34:1935–45.
  • Pant, D., A. Singh, G. Van Bogaert, S. Irving Olsen, P. Singh Nigam, L. Diels, and K. Vanbroekhoven. 2012. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Advances 2:1248–63.
  • Pant, D., G.Van Bogaert, M. De Smet, L. Diels, and K. Vanbroekhoven. 2010b. Use of novel permeable membrane and air cathodes in acetate microbial fuel cells. Electrochimica Acta 5:7710–6.
  • Pant, D., G. Van Bogaert, L. Diels, and K. Vanbroekhoven. 2010a. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology 101:1533–43.
  • Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnology and Bioengineering 81:348–55.
  • Parot, S., M. L. Délia, and A. Bergel. 2008. Forming electrochemically active biofilms from garden compost under chronoamperometry. Bioresource Technology 99:4809–16.
  • Patil, S. A., C. Hägerhäll, and L. Gorton. 2012. Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanalytical Reviews 4(2–4):159–92.
  • Pham, T. H., K. Rabaey, P. Aelterman, P. Clauwaert, L. De Schamphelaire, N. Boon, and W. Verstraete. 2006. Microbial fuel cells in relation to conventional anaerobic digestion technology. Engineering in Life Sciences 6:285–92.
  • Puig, S., M. Serra, M. Coma, M. Cabré, M. Dolors Balaguer, and J. Colprim. 2011. Microbial fuel cell application in landfill leachate treatment. Journal of Hazardous Materials 185:763–7.
  • Ramasamy, R. P., Z. Ren, M. M. Mench, and J. M. Regan. 2008. Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Biotechnology and Bioengineering 101:101–8.
  • Rosche, B., X. Z. Li, B. Hauer, A. Schmid, and K. Buehler. 2009. Microbial biofilms: A concept for industrial catalysis. Trends in Biotechnology 27:636–43.
  • Sevda, S., X. Dominguez-Benetton, K. Vanbroekhoven, H. De Wever, T. R. Sreekrishnan, and D. Pant. 2013a. High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell. Applied Energy 105:194–206.
  • Sevda, S., X. Dominguez-benetton, K. Vanbroekhoven, T. R. Sreekrishnan, and D. Pant. 2013b. Characterization and comparison of the performance of two different separator types in air – cathode microbial fuel cell treating synthetic wastewater. Chemical Engineering Journal 228:1–11.
  • Sevda, S. and T. R. Sreekrishnan. 2012. Effect of salt concentration and mediators in salt bridge microbial fuel cell for electricity generation from synthetic wastewater. Journal of Environmental Science and Health Part A Toxichazardous Substances Environmental Engineering 47:878–86.
  • Ter Heijne, A., H. V. M. Hamelers, V. De Wilde, R. A. Rozendal, and C. J. N. Buisman. 2006. A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environmental Science and Technology 40:5200–5
  • Torres, C. I., A. K. Marcus, and B. E. Rittmann.2008. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnology and Bioengineering 100:872–81.
  • Wang, X, S. Cheng, X. Zhang, X. Li, and B. E. Logan. 2011. Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs). International Journal of Hydrogen Energy 36:13900–6.
  • Wen, Q., Y. Wu, D. Cao, L. Zhao, and Q. Sun. 2009. Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Bioresource Technology 100:4171–5.
  • Xiao, B., F. Yang, and J. Liu. 2011. Enhancing simultaneous electricity production and reduction of sewage sludge in two-chamber MFC by aerobic sludge digestion and sludge pretreatments. Journal of Hazardous Materials 189:444–9.
  • Yuan, Y., Q. Chen, S. Zhou, L. Zhuang, and P. Hu. 2011. Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell. Journal of Hazardous Materials 187:591–5.
  • Zhang, C., M. Li, G. Liu, H. Luo, and R. Zhang. 2009. Pyridine degradation in the microbial fuel cells. Journal of Hazardous Materials 172:465–71.
  • Zhao, F., N. Rahunen, J. R.Varcoe, A. Chandra, C. Avignone-Rossa, A. E. Thumser, and R. C. T. Slade. 2008. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environmental Science and Technology 42:4971–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.