246
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Three-dimensional numerical modeling and characterization of two-stage and multilayer thermoelectric couples

, &

References

  • Angrist, S.W. 1982. Direct Energy Conversion, 4th ed. Boston: Allyn and Bacon Inc.
  • Antonova, E.E., and D.C. Looman. 2005. Finite elements for thermoelectric device analysis in ANSYS. Proceedings of 24th International Conference on Thermoelectric. pp. 215–218.
  • Bell, L.E. 2008. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:1457–1461.
  • Chen, L.G., J. Li, F.R. Sun, and C. Wu. 2005. Performance optimization of a two-stage semiconductor thermoelectric-generator. Applied Energy 82(4):300–312.
  • Chen, M., L.A. Rosendahl, and T. Condra. 2011. A three-dimensional numerical model of thermoelectric generators in fluid power systems. International Journal of Heat and Mass Transfer 54(1–3):345–55.
  • Chen, M., L.A. Rosendahl, T.J. Condra, and J.K. Pedersen. 2009. Numerical modeling of thermoelectric generators with varying material properties in a circuit simulator. IEEE Transactions on Energy Conversion 24 (1):112–24.
  • Cheng, C.H., S.Y. Huang, and T.C. Cheng. 2010. A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers. International Journal of Heat and Mass Transfer 53(9–10):2001–11.
  • Crane, D., J. LaGrandeur, and L. Bell. 2007. Development of a scalable 10% efficient thermoelectric generator. Proceedings of the 2007 Diesel Engine-Efficiency and Emissions Research conference. pp. 8–15
  • El-Genk, M.S., and H.H. Saber. 2003. High efficiency segmented thermoelectric unicouple for operation between 973 and 300 K. Energy Conversion and Management 44:1069–88.
  • Gao, J.L., Q.G. Du, X.D. Zhang, and X.Q. Jiang. 2011. Thermal stress analysis and structure parameter selection for a Bi2Te3–based thermoelectric module. Journal of Electronic Materials 40(5):884–88.
  • Gou, X., H. Xiao, and S. Yang. 2010. Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system. Applied Energy 87(10):3131–3136.
  • Hicks, L.D., and M.S. Dresselhaus. 1993. Effect of quantum well structures on thermoelectric figure of merit. Physics Review B 47:12727–12731.
  • Hicks, L.D., and M.S. Dresselhaus. 1993. Thermoelectric figure of merit of a one-dimensional conductor. Physics Review B 47:16631–16634.
  • Hsiao, Y.Y, W.C. Chang, and S.L. Chen. 2010. A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine. Energy 35(3):1447–54.
  • Hsu, K.F., S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis. 2004. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303:818–21.
  • Karthikeyan, B., D. Kesavaram, S.A. Kumar, and K. Srithar. 2013. Exhaust energy recovery using thermoelectric power generation from a thermally insulated diesel engine. International Journal of Green Energy 10(10):1056–1071.
  • Lee, H.S. 2013. Optimal design of thermoelectric devices with dimensional analysis. Applied Energy 106:79–88.
  • Meng, J.H., X.D. Wang, and X.X. Zhang. 2013. Transient modeling and dynamic characteristics of thermoelectric cooler. Applied Energy 108:340–48.
  • Meng, J.H., X.X. Zhang, and X.D. Wang. 2014. Dynamic response characteristics of thermoelectric generator predicted by a three-dimensional heat-electricity coupled model. Journal of Power Sources 245:262–69.
  • Nolas, G.S., M. Kaeser, R.T. Littleton, and T.M. Tritt. 2000. High figure of merit in ytterbium-filled skutterudite materials. Applied Physics Letter 77:1855–1857.
  • Poudel, B., Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren. 2008. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634–38.
  • Reddy, B.V.K., M. Barry, J. Li, and M.K. Chyu. 2012. Three-dimensional multiphysics coupled field analysis of an integrated thermoelectric device. Numerical Heat Transfer Part A 62(12):933–47.
  • Reddy, B.V.K., M. Barry, J. Li, and M.K. Chyu. 2013. Mathematical modeling and numerical characterization of composite thermoelectric devices. International Journal of Thermal Sciences 67:53–63.
  • Rowe, D.M. 2006. Thermoelectrics Handbook: Macro to Nano. Boca Raton: CRC press.
  • Sharma, S., V.K. Dwivedi, and S.N. Pandit. 2014. A review of thermoelectric devices for cooling applications. International Journal of Green Energy 11(9):899–909.
  • Sharp, J.W. 2003. Some properties of Ge-Te based thermoelectric alloys. Proceedings of the 22nd International Conference on Thermoelectric. pp. 267–70.
  • Silvester P.P., and R.L. Ferrari. 1996. Finite elements for electrical engineers, 3rd ed. Cambridge: Cambridge University Press.
  • Stobart, R., and D. Milner. 2009. The potential for thermo-electric regeneration of energy in vehicles. SAE Paper No. 2009–01–1333. Warrendale, PA: SAE.
  • Wang, X.D., Y.X. Huang, C.H. Cheng, D.T. Lin, and C.H. Kang. 2012. A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field. Energy 47(1):488–97.
  • Wang, Y.C., C.S. Dai, and S.X. Wang. 2013. Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source. Applied Energy 112:1171–80.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.