472
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Molasses-based growth and lipid production by Chlorella pyrenoidosa: A potential feedstock for biodiesel

, , , &

References

  • Bligh, E.G., and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37:911–7.
  • Bozbas, K. 2008. Biodiesel as an alternative motor fuel: Production and policies in the European Union. Renewable and Sustainable Energy Reviews 12:542–52.
  • Bruce, E.R. 2008. Opportunities for renewable bioenergy using microorganisms. Biotechnology and Bioengineering 100(2):203–12.
  • Cheng, Y., Y. Lu, C. Gao, and Q. Wu. 2009. Algae-based biodiesel production and optimization using sugar cane as the feedstock. Energy & Fuels 23: 4166- 73.
  • Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances 25:294–306.
  • Chisti, Y. 2008. Biodiesel from microalgae beats bioethanol. Trends in Biotechnology 26(3):126–31.
  • Christie, W.W. 2003. Lipid analysis: Isolation, separation, identification, and structural analysis of lipids, 3rd ed. Bridgwater, UK: Oily Press.
  • Donohue, T., and R. Cogdell. 2006. Microorganisms and clean energy. Nature Reviews Microbiology 4:800.
  • DuBios, M., K. Gilles, J. Hamilton, P. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28(3):350–6.
  • Gaden, E.L. 2000. Fermentation process kinetics. Biotechnology and Bioengineering 67:629–35.
  • Gaurav, K., R. Srivastava, and R. Singh. 2013. Exploring biodiesel: Chemistry, biochemistry and microalgal source. International Journal of Green Energy 10:775–96.
  • Griffiths, M.J., and S.T.L. Harrison. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology 21:493–507.
  • Groom, M.J., E.M. Gray, and P.A. Townsend. 2008. Biofuels and biodiversity: Principles for creating better policies for biofuel production. Conservation Biology 22(3):602–9.
  • Grover, J.P. 1991. Non-steady state dynamics of algal production growth: Experiments with two chlorophytes. Journal of Phycology 27:70–9.
  • Gu, S.B., J.M. Yao, Q.P. Yuan, P.J. Xu, Z.M. Zheng, and Z.L. Yu. 2006. Kinetics of Agrobacterium tumefaciens ubiquinone-10 batch production. Process Biochemistry 41:1908–12.
  • Hu, Q., M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, and A. Darzins. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. The Plant Journal 54:621–39.
  • Huntley, M.E., and D.G. Redalje. 2007. CO2 mitigation and renewable oil from photosynthetic microbes: A new appraisal. Mitigation and Adaptation Strategies for Global Change 12:573–608.
  • Janaun, J., and N. Ellis. 2010. Perspectives on biodiesel as a sustainable fuel. Renewable and Sustainable Energy Reviews 14:1312–20.
  • Jiang, L., J. Wang, S. Liang, X. Wang, P. Cen, and Z. Xu. 2009. Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Bioresource Technology 100:3403–9.
  • Knothe, G. 2008. “Designer” biodiesel: Optimizing fatty ester composition to improve fuel properties. Energy & Fuels 22:1358–64.
  • Knothe, G. 2009.Improving biodiesel fuel properties by modifying fatty ester composition. Energy & Environmental Science 2:759–66.
  • Liu, J., K.-W. Fan, Y. Zhong, Z. Sun, J. Huang, Y. Jiang, and F. Chen. 2010. Production potential of Chlorella zofingiensis as a feedstock for biodiesel. Bioresource Technology 101:8658–63.
  • Liu, J., J. Huang, Y. Jiang, and F. Chen. 2012. Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis. Bioresource Technology 107:393–8.
  • Liu, Y.P., P. Zheng, Z.H. Sun, Y. Ni, J.J. Dong, and L.L. Zhu. 2008. Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Bioresource Technology 99:1736–42.
  • Mata, T.M., A.A. Martins, and N.S. Caetano. 2010. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews 14:217–32.
  • Miao, X.L., and Q.Y. Wu. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresource Technology 197:841–6.
  • Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3):426–8.
  • Ren, H.Y., B.F. Liu, C. Ma, L. Zhao, and N.Q. Ren. 2013. A new lipid-rich microalga Scenedesmus sp. Strain R-16 isolated using Nile red staining: Effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnology for Biofuels 6:143–53.
  • Rodolfi, L., G.C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini, and M.R. Tredici. 2009. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in low-cost photobioreactor. Biotechnology and Bioengineering 102(1): 100- 12.
  • Schenk, P.M., S.R. Thomas-Hall, E. Stephens, U.C. Marx, J.H. Mussgnug, C. Posten, O. Kruse, and B. Hankamer. 2008. Second-generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Research 1:20–43.
  • Vasudevan, P.T., and M. Briggs. 2008. Biodiesel production – current state of the art and challenges. Journal of Industrial Microbiology Biotechnology 35:421–30.
  • Yan, D., Y. Lu, Y.-F. Chen, and Q. Wu. 2011. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresource Technology 102:6487–93.
  • Yang, J.S., E. Rasa, P. Tantayotai, K.M. Scow, H.L. Yuan, and K.R. Hristova. 2011. Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresource Technology 102:3077–82.
  • Yun, Y.S., and J.M. Park. 2003. Kinetic modeling of the light-dependent photosynthetic activity of the green microalga Chlorella vulgaris. Biotechnology and Bioengineering 83:303–11.
  • Zhang, Y., M.A. Dube, D.D. McLean, and M. Kates. 2008. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology 89(1):1–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.