243
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Biodiesel production from a free fatty acid containing Karanja oil by a single-step heterogeneously catalyzed process

, &

Reference

  • Agarwal, M., S. Soni, K. Singh, S. P. Chaurasia, and R. K. Dohare. 2013. Biodiesel yield assessment in continuous-flow reactors using batch reactor conditions. International Journal of Green Energy 10(1):28–40.
  • Alane, N., S. Djerad, and L. Tifouti. 2008. Acid leaching of zinc from ZNO/Al2O3 catalysts. Lebanese Science Journal 9(2):63–74.
  • Alsalme, A., E. F. Kozhevnikova, and I. V. Kozhevnikov. 2008. Heteropoly acids as catalysts for liquid-phase esterification and transesterification. Applied Catalysis A: General 349:170–6.
  • Amarnath, H. K. and P. Prabhakaran. 2012. A study on the thermal performance and emissions of a variable compression ratio diesel engine fuelled with karanja biodiesel and the optimization of parameters based on experimental data. International Journal of Green Energy 9(8):841–63.
  • Amarnath, H. K., P. Prabhakaran, S. A. Bhat, and R. Paatil. 2014. A comparative analysis of thermal performance and emission characteristics of methyl esters of karanja and jatropha oils based on a variable compression ratio diesel engine. International Journal of Green Energy 11(7):675–94.
  • Azam, M. M., A. Waris, and N. M. Nahar. 2005. Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass and Bioenergy 29:293–302.
  • Boocock, D. G. B., S. K. Konar, V. Mao, C. Lee, and S. Buligan. 1998. Fast formation of high-purity methyl esters from vegetable oils. Journal of the American Oil Chemists Society 75:1167–72.
  • Bozek-Winkler, E. and J. Gmehling. 2006. Transesterification of methyl acetate and n-butanol catalyzed by Amberlyst 15. Industrial and Engineering Chemistry Research 45:6648–54.
  • Guillen, M. D. and A. Ruiz. 2001. High resolution 1H nuclear magnetic resonance in the study of edible oils and fats. Trends in Food Science & Technology 12:328–38.
  • Heidekum, A., M. A. Harmer, and W. F. Hoelderich. 1999. Addition of carboxylic acids to cyclic olefins catalyzed by strong acidic ion-exchange resins. Journal of Catalysis 181:217–22.
  • Karmee, S. K. and A. Chadha 2005. Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresource Technology 96:1425–9.
  • Khayoon, M. S. and B. H. Hameed. 2013. Single-step esterification of crude karanj (Pongamia pinnata) oil to fatty acid methyl esters over mesostructured SBA-16 supported 12- molybdo phosphoric acid catalyst. Fuel Processing Technology 114:12–20.
  • Khayoon, M. S., M. A. Olutoye, and B. H. Hameed. 2012. Utilization of crude karanj (Pongamia pinnata) oil as a potential feedstock for the synthesis of fatty acid methyl esters. Bioresource Technology 111:175–9.
  • Kiss, A. A., A. C. Dimian, and G. Rothenberg. 2006. Solid acid catalysts for biodiesel production—towards sustainable energy. Advanced Synthesis & Catalysis 348(1–2):75– 81.
  • Kumar, R., P. Tiwari, and S. Garg. 2013. Alkali transesterification of linseed oil for biodiesel production. Fuel 104:553–60.
  • Lee, D. 2013. Preparation of a sulfonated carbonaceous material from lignosulfonate and its usefulness as an esterification catalyst. Molecule 18:8168–80.
  • Lee, S., S. C. Park, P. Lu, Z. M. Wang, D. K. Kim, and J. Y. Park. 2008. Production and characterization of biodiesel from tung oil. Applied Biochemistry and Biotechnology 148:109–17.
  • Liu, F., W. Li, Q. Sun, L. Zhu, X. Meng, and Y. Guo. 2011. Transesterification to biodiesel with superhydrophobic porous solid base catalysts. ChemSusChem 4:1059–62.
  • Lo´pez, D. E., J. G. Goodwin Jr., D. A. Bruce, and E. Lotero. 2005. Transesterification of triacetin with methanol on solid acid and base catalysts. Applied Catalysis A: General 295:97–105.
  • Lode, F., S. Freitas, M. Mazzotti, and M. Morbidelli. 2004. Sorptive and catalytic properties of partially sulfonated resins. Industrial and Engineering Chemistry Research 43:2658–68.
  • Lotero, E., Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce, and J. G. Goodwin Jr. 2005. Synthesis of biodiesel via acid catalysis. Industrial and Engineering Chemistry Research 44:5353–63.
  • Ma, F., L. D. Clements, and M. A. Hanna. 1998. The effect of catalyst, free fatty acids, and water on transesterification of beef tallow. Transactions of the American Society of Agricultural Engineers 41(5):1261–4.
  • Ma, F. and M. A. Hanna. 1999. Biodiesel production: A review. Bioresource Technology 70:1–15.
  • Margolese, D., J. A. Melero, S. C. Christiansen, B. F. Chmelka, and G. D. Stucky. 2000. Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups. Chemistry of Materials 12:2448–59.
  • Mazzotti, M., B. Neri, D. Gelosa, A. Kruglov, and M. Morbidelli. 1997. Kinetics of liquid-phase esterification catalysed by acidic resins. Industrial and Engineering Chemistry Research 36:3–10.
  • Meher, L. C., D. V. Sagar, and S.N. Naik. 2006. Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews 10:248–68.
  • Melero, J. A., J. Iglesias, and G. Morales. 2009. Heterogeneous acid catalysts for biodiesel production: Current status and future challenges. Green Chemistry 11:1285–308.
  • Mohammed-Dabo, I. A., M. S. Ahmad, A. Hamza, K. Muazu, and A. Aliyu. 2012. Cosolvent transesterification of Jatropha curcas seed oil. Journal of Petroleum Technology and Alternative Fuels 3:42–51.
  • Naik, M., L. C. Meher, S. N. Naik, and L. M. Das. 2008. Production of biodiesel from high free fatty acid karanja (Pongamia pinnata) oil. Biomass and bioenergy 32:354–7.
  • Pappu, V. K. S., A. J. Yanez, L. Peereboom, E. Muller, C. T. Lira, and D. J. Miller. 2011. A kinetic model of the Amberlyst-15 catalyzed transesterification of methyl stearate with n-butanol. Bioresource Technology 102:4270–2.
  • Paterson, G., T. Issariyakul, C. Baroi, A. Bassi, and A. Dalai. 2013. Ion-exchange resins as catalyst in transesterification of triolein. Catalysis Today 212:157–63.
  • Reis, S. C. M. d., E. R. Lachter, R. S. V. Nascimento, J. A. Rodrigues Jr., and M. G. Reid. 2005. Transesterification of Brazilian vegetable oils with methanol over ion-exchange resins. Journal of the American Oil Chemists’ Society 82(9):661–5.
  • Salem, I. A. 2001. Activation of H2O2 by Amberlyst-15 resin supported with copper(II)-complexes towards oxidation of crystal violet. Chemosphere 44:1109–19.
  • Saravanan, K., B. Tyagi, and H. C. Bajaj. 2012. Sulfated zirconia: An efficient solid acid catalyst for esterification of myristic acid with short chain alcohols. Catalysis Science & Technology 2:2512–20.
  • Scott, P. T., L. Pregelj, N. Chen, J. S. Hadler, M. A. Djordjevic, and P. M. Gresshoff. 2008. Pongamia pinnata: An untapped resource for the biofuels industry of the future. BioEnergy Research 1:2–11.
  • Sharma, Y. C., B. Singh, and J. Korstad. 2010. Application of an efficient nonconventional heterogeneous catalyst for biodiesel synthesis from Pongamia pinnata oil. Energy and Fuels 24:3223–31.
  • Sharma, Y. C., B. Singh, and S. N. Upadhyay. 2008. Advancements in development and characterization of biodiesel: A review. Fuel 87(12):2355–73.
  • Sinegrat, J. A. and G. Carta. 1987. Sorption of water from alcohol-water mixtures by cation-exchange resins. Industrial and Engineering Chemistry Research 26:2437–41.
  • Sivasamy, A., K. Y. Cheah, P. Fornasiero, F. Kemausuor, S. Zinoviev, and S. Miertus. 2009. Catalytic applications in the production of biodiesel from vegetable oils. ChemSusChem 2:278–300.
  • Srivastava, P. K. and M. Verma. 2008. Methyl ester of karanja oil as an alternative renewable source energy. Fuel 87:1673–7.
  • Thiruvengadaravi, K. V., J. Nandagopal, P. Baskaralingam, V. S. S. Bala, and S. Sivanesan. 2012a. Acid-catalyzed esterification of karanja (Pongamia pinnata) oil with high free fatty acids for biodiesel production. Fuel 98:1–4.
  • Thiruvengadaravi, K. V., J. Nandagopal, P. Baskaralingam,V. S. S. Bala, P. Vijayalakshmi, S. D. Kirupha, and S. Sivanesan. 2012b. The esterification of free fatty acids in karanja (Pongamia pinnata) oil using phosphoric acid modified zeolite. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34:2234–41.
  • Weerachanchai, P., C. Tangsathitkulchai, and M. Tangsathitkulchai. 2012. Effect of reaction conditions on the catalytic esterification of bio-oil. Korean Journal of Chemical Engineering 29:182–9.
  • Yan, S., C. DiMaggio, S. Mohan, M. Kim, S. O. Salley, and K. Y. S. Ng. 2010. Advancements in heterogeneous catalysis for biodiesel synthesis. Topics in Catalysis 53:</b>721–36.
  • Zhang, Y., M. A. Dube, D. D. McLean, and M. Kates. 2003a. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology 89:1–16.
  • Zhang, Y., M. A. Dube, D. D. McLean, and M. Kates. 2003b. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresource Technology 90:229–40.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.