392
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Super effective Zn-Fe-doped TiO2 nanofibers as photocatalyst for ammonia borane hydrolysis

, , , , &

References

  • Baitalow, F., G. Wolf, J. P. E. Grolier, F. Dan, and S. L. Randzio. 2006. Thermal decomposition of ammonia–borane under pressures up to 600 bar. Thermochimica Acta. 445:121–5.
  • Barakat, N. A. 2012. Catalytic and photo hydrolysis of ammonia borane complex using Pd-doped Co nanofibers. Applied Catalysis A: General.
  • Barakat, N. A. 2013. Effective Co-Mn-O Nanofibers for Ammonia Borane Hydrolysis. Materials Letters. 106:229–32.
  • Barakat, N. A., M. A. Abdelkareem, M. El-Newehy, and H. Y. Kim. 2013. Influence of the nanofibrous morphology on the catalytic activity of NiO nanostructures: an effective impact toward methanol electrooxidation. Nanoscale research letters. 8:1–6.
  • Barakat, N. A., M. A. Kanjawal, I. S. Chronakis, and H. Y. Kim. (2012a) Influence of Temperature on The photodegrdation Process Using Ag-doped TiO2 Nanostructures: Negative Impact with the Nanofibers. Journal of Molecular Catalysis A: Chemical. 336:333–40.
  • Barakat, N. A. M., M. A. Kanjawal, I. S. Chronakis, and H. Y. Kim. (2012b) Influence of temperature on the photodegrdation process using Ag-doped TiO2 nanostructures: Negative impact with the nanofibers. Journal of Molecular Catalysis A: Chemical. 366:333–40.
  • Barakat, N. A. M., A. Taha, M. Motlak, M. M. Nassar, M. S. Mahmoud, S. S. Al-Deyab, et al. 2014. ZnO&Fe2O3-incoportaed TiO2 nanofibers as super effective photocatalyst for water splitting under visible light radiation. Applied Catalysis A: General. 481:19–26.
  • Basu, S., A. Brockman, P. Gagare, Y. Zheng, P. V. Ramachandran, W. N. Delgass, et al. 2009. Chemical kinetics of Ru-catalyzed ammonia borane hydrolysis. Journal of Power Sources. 188:238–43.
  • Chandra, M. and Q. Xu. 2007. Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts. Journal of Power Sources. 168:135–42.
  • Cheng, D., W. Wang, S. Huang, and D. Cao. 2008. Atomistic modeling of multishell onion-ring bimetallic nanowires and clusters. The Journal of Physical Chemistry C. 112:4855–60.
  • Glendening, E. D. and A. Streitwieser. 1994. Natural energy decomposition analysis: An energy partitioning procedure for molecular interactions with application to weak hydrogen bonding, strong ionic, and moderate donor–acceptor interactions. The Journal of Chemical Physics. 100:2900–9.
  • Guo, S., S. Dong, and E. Wang. 2009. Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation. ACS Nano. 4:547–55.
  • Jeon, S. G., J.-G. Na, C. H. Ko, K. B. Yi, N. S. Rho, and S. B. Park. 2011. Preparation and application of an oil-soluble CoMo bimetallic catalyst for the hydrocracking of oil sands bitumen. Energy & Fuels. 25:4256–60.
  • Jiang, H.-L. and Q. Xu. 2011. Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catalysis Today. 170:56–63.
  • Jonas, V., G. Frenking, and M. T. Reetz. 1994. Comparative Theoretical Study of Lewis Acid-Base Complexes of BH3, BF3, BCl3, AlCl3, and SO2. Journal of the American Chemical Society. 116:8741–53.
  • Karunakaran, C., G. Abiramasundari, P. Gomathisankar, G. Manikandan, and V. Anandi. 2010. Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light. Journal of Colloid and Interface Science. 352:68–74.
  • Khaliullin, R. Z., E. A. Cobar, R. C. Lochan, A. T. Bell, and M. Head-Gordon. 2007. Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals. The Journal of Physical Chemistry A. 111:8753–65.
  • Metin, O. n. and S. Özkar. 2009. Hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride using water-soluble Polymer-stabilized Cobalt(0) nanoclusters catalyst. Energy & Fuels. 23:3517–26.
  • Mills, A., R. H. Davies, and D. Worsley. 1993. Water purification by semiconductor photocatalysis. Chemical Society Reviews. 22:417–25.
  • Nirmala, R., H. Y. Kim, C. Yi, N. A. Barakat, R. Navamathavan, and M. El-Newehy. 2012. Electrospun nickel doped titanium dioxide nanofibers as an effective photocatalyst for the hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy. 37:10036–45.
  • Ou, H.-H. and S.-L. Lo. 2007. Effect of Pt/Pd-doped TiO2 on the photocatalytic degradation of trichloroethylene. Journal of Molecular Catalysis A: Chemical. 275:200–5.
  • Rakap, M., E. E. Kalu, and S. Özkar. 2011. Polymer-immobilized palladium supported on TiO2 (Pd–PVB–TiO2) as highly active and reusable catalyst for hydrogen generation from the hydrolysis of unstirred ammonia–borane solution. International Journal of Hydrogen Energy. 36:1448–55.
  • Sun, D., V. Mazumder, O. n. Metin, and S. Sun. 2011. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles. ACS Nano. 5:6458–64.
  • Trudeau, M. L. 1999. Advanced materials for energy storage-advanced materials for energy storage. MRS Bulletin-Materials Research Society. 24:23–6.
  • Vorontsov, A., I. Stoyanova, D. Kozlov, V. Simagina, and E. Savinov. 2000. Kinetics of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide. Journal of Catalysis. 189:360–9.
  • Wang, X., C. Chen, Y. Chang, and H. Liu. 2009. Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles. Journal of Hazardous Materials. 161:815–23.
  • Weast, R. C. 1969. Handbook of chemistry and physics. The American Journal of the Medical Sciences. 257:423.
  • West, D., S. Limpijumnong, and S. B. Zhang. 2009. Band structures and native defects of ammonia borane. Physical Review B. 80:064109.
  • Xu, Y. and M. A. Schoonen. 2000. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist. 85:543–56.
  • Yan, J.-M., X.-B. Zhang, S. Han, H. Shioyama, and Q. Xu. 2009. Magnetically recyclable Fe–Ni alloy catalyzed dehydrogenation of ammonia borane in aqueous solution under ambient atmosphere. Journal of Power Sources. 194:478–81.
  • Yan, J.-M., X.-B. Zhang, H. Shioyama, and Q. Xu. 2010. Room temperature hydrolytic dehydrogenation of ammonia borane catalyzed by Co nanoparticles. Journal of Power Sources. 195:1091–4.
  • Yousef, A., N. A. Barakat, K. A. Khalil, A. R. Unnithan, G. Panthi, and H. Y. Kim. (2012a) Photocatalytic release of hydrogen from ammonia borane-complex using Ni (0)-Doped TiO2/C electrospun nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 410:59–65.
  • Yousef, A., N. A. Barakat, and H. Y. Kim. 2013. Electrospun Cu-doped titania nanofibers for photocatalytic hydrolysis of ammonia borane. Applied Catalysis A: General. 467:98–106.
  • Yousef, A., N. A. M. Barakat, T. Amna, A. R. Unnithan, S. S. Al-Deyab, and H. Yong Kim. (2012b) Influence of CdO-doping on the photoluminescence properties of ZnO nanofibers: Effective visible light photocatalyst for waste water treatment. Journal of Luminescence. 132:1668–77.
  • Yuan, Z.-h., J.-h. Jia, and L.-d. Zhang. 2002. Influence of co-doping of Zn(II)+Fe(III) on the photocatalytic activity of TiO2 for phenol degradation. Materials Chemistry and Physics. 73:323–6.
  • Zhang, J., Y. Zhao, D. L. Akins, and J. W. Lee. 2010. Thermal decomposition and spectroscopic studies of preheated ammonia borane. The Journal of Physical Chemistry C. 114:19529–34.
  • Zhang, M., L. Shi, S. Yuan, Y. Zhao, and J. Fang. 2009. Synthesis and photocatalytic properties of highly stable and neutral TiO2/SiO2 hydrosol. Journal of Colloid and Interface Science. 330: 113–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.