100
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Quantum-dots-sensitized solar cells based on vertically ranged titanium dioxide nanotubes

, , , &

References

  • Adachi, M., Y. Murata, I. Okada, and S. Yoshikawa. 2003. Formation of titania nanotube and applications for dye-sensitized solar cells. Journal of The Electrochemical Society 150:G488–G493.
  • Chu, S. Z., S. Inoue, I. Okada, and S. Yoshikawa. 2005. A new electrochemical lithography fabrication of self-organized titania nanostructures on glass by combined anodization. Journal of The Electrochemical Society 152(3):B116–B124.
  • Diguna, L. J., M. Murakami, A. Sato, Y. Kumagai, T. Ishihara, N. Kobayashi, Q. Shen, and T. Toyoda. 2006. Photo acoustic and photo electrochemical characterization of inverse opal TiO2 sensitized with CdSe quantum dots. Japanese Journal of Applied Physics 45:5563–5568.
  • Ellingson R. J., M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros. 2005. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano letters 5(5):865–871.
  • Fu, H., and M. Choi, W. Luan, Y. S. Kim, and S. T. Tu. 2012. Hybrid solar cells with an inverted structure: Nanodots incorporated ternary system. Solid-State Electronics 69:50–54.
  • Fu, H., W. Luan, and S. T. Tu. 2012. A simple route for synthesis of PbSe nanocrystals: shape control by ligand and reaction time. Dalton Transactions 41(39):12254–12258.
  • Gong, D. W., and C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen and E. C. Dickey. 2001. Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research 16(12):3331–3334.
  • Hoyer, P. 1996. Formation of a titanium dioxide nanotube array. Langmuir 12(6):1411–1413.
  • Kim, D., A. Ghicov, S. P. Albu, and P. Schmuki. 2008. Bamboo-type TiO2 nanotubes: Improved conversion efficiency in dye-sensitized solar cells. Journal of the American Chemical Society 130(49):16454–16455.
  • Kongkanand, A., K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat. 2008. Quantum dot solar cells: Tuning photo response through size and shape control of CdSe−TiO2 architecture. Journal of the American Chemical Society 130:4007–4015.
  • Law, M., and L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang. 2005. Nanowire dye-sensitized solar cells. Nature Materials 4:455–459.
  • Lee, Y. L., and Y. S. Lo. 2009. Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Advanced Functional Materials 19:604–609.
  • Mor, G. K., O. K. Varghese, M. Paulose, K. Shankar, and C. A. Grimes. 2006. A review on highly-ordered TiO2 nanotube-arrays: Fabrication, materials properties, and solar energy applications. Solar Energy Materials and Solar Cells 90:2011–2075.
  • Nishimura, S., N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. Lagemaat, A. J. Frank. 2003. Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. Journal of the American Chemical Society 125(20):6306–6310.
  • Nozik, A. J. 2002. Quantum dot solar cells. Physica E 14:115–120.
  • Paulose, M., K. Sharkar, S. Yoriya, H. E. Prakasam, O. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald, and C. A. Grimes. 2006. Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. The Journal of Physical Chemistry B 110(33):16179–16184.
  • Peter, L. M., D. J. Riley, J. Tull, and K. G. Wijayantha. 2002. Photosensitization of nano-crystalline TiO2 by self-assembled layers of CdS quantum dots. Chemical Communications 10:1030–1031.
  • Plass, R., S. Pelet, J. Krueger, M. Grätzel, and U. Bach. 2002. Quantum dot sensitization of organic–inorganic hybrid solar cells. The Journal of Physical Chemistry B 106:7578–7580.
  • Schaller, R. D., and V. I. Klimov. 2004. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Physical Review Letters 92(18):186601–186004.
  • Shankar, K., G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese, and C. A. Grimes. 2007. Highly-ordered TiO2 nanotube arrays up to 220 μm in length: Use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18:065707–065718.
  • Song, M. Y., Y. R. Ahn, S. M. Jo, D. Y. Kim, and J. P. Ahn. 2005. TiO2 single-crystalline nanorod electrode for quasi-solid-state dye-sensitized solar cells. Applied Physics Letters 87:113113–113115.
  • Wang, W., O. K. Varghese, M. Paulose, C. A. Grimes, Q. Wang, and C. Dickey. 2004. A study on the growth and structure of titania nanotubes. Journal of Materials Research 19(2):417–422.
  • Wijnhoven, J. E., and W. L. Vos. 1998. Preparation of photonic crystals made of air spheres in titania. Science 281:802–804.
  • Yang, Z., C. Y. Chen, C. W. Liu, C. L. Li, and H. T. Chang. 2011. Quantum dot-sensitized solar cells featuring CuS/Cos electrodes provide 4.1% efficiency. Advanced Energy Materials 1:259–264.
  • Yang, Z., and H. T. Chang. 2010. CdHgTe and CdTe quantum dots co-sensitized solar cells displaying an energy conversion efficiency exceeding 2%. Solar Energy Materials and Solar Cells 94:2046–2051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.