379
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Heterostructure CdS/ZnS nanoparticles as a visible light-driven photocatalyst for hydrogen generation from water

&

References

  • Abe, R., K. Sayama, and H. Sugihara. 2005. Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I-. Journal of Physical Chemistry B 109 (33):16052–61.
  • Bak, T., J. Nowotny, M. Rekas, and C. C. Sorrell. 2002. Photo-electrochemical hydrogen generation from water using solar energy. International Journal of Hydrogen Energy 27 (10):991–1022.
  • Bao, N., L. Shen, T. Takata, K. Domen, A. Gupta, K. Yanagisawa, and C. A. Grimes. 2007. Facile Cd-thiourea complex thermolysis synthesis of phase-controlled CdS nanocrystals for photocatalytic hydrogen production under visible light. Journal of Physical Chemistry C 111 (47):17527–34.
  • Bao, N. Z., L. M. Shen, T. Takata, and K. Domen. 2008. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chemistry of Materials 20 (1):110–17.
  • Best, J. P., and D. E. Dunstan. 2009. Nanotechnology for photolytic hydrogen production: colloidal anodic oxidation. International Journal of Hydrogen Energy 34 (18):7562–78.
  • Cao, Y. W., and U. Banin. 2000. Growth and properties of semiconductor core/shell nanocrystals with InAs cores. Journal of the American Chemical Society 122 (40):9692–702.
  • Chen, X., S. Shen, L. Guo, and S. S. Mao. 2010. Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews 110 (11):6503–70.
  • Dholam, R., N. Patel, and A. Miotello. 2011. Efficient H2 production by water-splitting using indium-tin-oxide/V-doped TiO2 multilayer thin film photocatalyst. International Journal of Hydrogen Energy 36 (11):6519–28.
  • Ishikawa, A., Y. Yamada, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen. 2003. Novel synthesis and photocatalytic activity of oxysulfide Sm2Ti2S2O5. Chemistry of Materials 15 (23):4442–6.
  • Kawahara, T., Y. Konishi, H. Tada, N. Tohge, J. Nishii, and S. Ito. 2002. A patterned TiO2(anatase)/TiO2(rutile) bilayer-type photocatalyst: Effect of the anatase/rutile junction on the photocatalytic activity. Angewandte Chemie-International Edition 41 (15):2811–3.
  • Kubelka, P., and F. Munk. 1931. Ein Beitrag zur Optik der Far- banstriche. Zeitschrift Technische Physik 12:593–601.
  • Kudo, A., and M. Sekizawa. 1999. Photocatalytic H2 evolution under visible light irradiation on Zn1-xCuxS solid solution. Catalysis Letters 58 (4):241–3.
  • Kudo, A., and M. Sekizawa. 2000. Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst. Chemical Communications (15):1371–2.
  • Law, M., L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, and P. D. Yang. 2006. ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. Journal of Physical Chemistry B 110 (45):22652–63.
  • Lee, Y., H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, and M. Yashima. 2007. Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light. Journal of Physical Chemistry C 111 (2):1042–8.
  • Li, M. T., J. G. Jiang, and L. J. Guo. 2010. Synthesis, characterization, and photoelectrochemical study of Cd1-xZnxS solid solution thin films deposited by spray pyrolysis for water splitting. International Journal of Hydrogen Energy 35 (13):7036–42.
  • Liu, G. J., L. Zhao, L. J. Ma, and L. J. Guo. 2008. Photocatalytic H2 evolution under visible light irradiation on a novel CdxCuyZn1-x-yS catalyst. Catalysis Communications 9 (1):126–30.
  • Maeda, K., K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, and K. Domen. 2006. Photocatalyst releasing hydrogen from water - enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440 (7082):295.
  • Matsumura, M., S. Furukawa, Y. Saho, and H. Tsubomura. 1985. Cadmium-sulfide photocatalyzed hydrogen-production from aqueous-solutions of sulfite-effect of crystal-structure and preparation method of the catalyst. Journal of Physical Chemistry 89 (8):1327–9.
  • Navarro, R. M., F. del Valle, and J. L. G. Fierro. 2008. Photocatalytic hydrogen evolution from CdS-ZnO-CdO systems under visible light irradiation: Effect of thermal treatment and presence of Pt and Ru cocatalysts. International Journal of Hydrogen Energy 33 (16):4265–73.
  • Priya, R., and S. Kanmani. 2010. Solar photocatalytic generation of hydrogen under ultraviolet-visible light irradiation on (CdS/ZnS)/Ag2S + (RuO2/TiO2) photocatalysts. Bulletin of Materials Science 33 (1):85–8.
  • Reber, J. F., and K. Meier. 1984. Photochemical production of hydrogen with zinc-sulfide suspensions. Journal of Physical Chemistry 88 (24):5903–13.
  • Sathish, A., and R. P. Viswanath. 2007. Photocatalytic generation of hydrogen over mesoporous CdS nanoparticle: Effect of particle size, noble metal and support. Catalysis Today 129 (3–4):421–7.
  • Silva, L. A., S. Y. Ryu, J. Choi, W. Choi, and M. R. Hoffmann. 2008. Photocatalytic hydrogen production with visible light over Pt-interlinked hybrid composites of cubic-phase and hexagonal-phase CdS. Journal of Physical Chemistry C 112 (32):12069–73.
  • Tan, S. S., L. Zou, and E. Hu. 2006. Photocatalytic Production of Methane and Hydrogen Through Reduction of Carbon Dioxide with Water Using Titania Pellets. International Journal of Green Energy 3 (3):283–90.
  • Subramanian, V., E. E. Wolf, and P. V. Kamat. 2003. Green emission to probe photoinduced charging events in ZnO-Au nanoparticles: Charge distribution and fermi-level equilibration. Journal of Physical Chemistry B 107 (30):7479–85.
  • Tambwekar, S. V., D. Venugopal, and M. Subrahmanyam. 1999. H2 production of (CdS-ZnS)-TiO2 supported photocatalytic system. International Journal of Hydrogen Energy 24 (10):957–63.
  • Tsuji, I., H. Kato, and A. Kudo. 2006. Photocatalytic hydrogen evolution on ZnS-CuInS2-AgInS2 solid solution photocatalysts with wide visible light absorption bands. Chemistry of Materials 18 (7):1969–75.
  • Tsuji, I., H. Kato, H. Kobayashi, and A. Kudo. 2005. Photocatalytic H2 evolution under visible-light irradiation over band-structure-controlled (CuIn)(x)Zn2(1-x)S2 solid solutions. Journal of Physical Chemistry B 109 (15):7323–9.
  • Wang, X., K. Shih, and X. Y. Li. 2010. Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts. Water Science and Technology 61 (9):2303–8.
  • Wang, X., G. Liu, Z. G. Chen, F. Li, G. Q. Lu, and H. M. Cheng. 2010. Highly efficient H-2 evolution over ZnO-ZnS-CdS heterostructures from an aqueous solution containing SO32- and S2- ions. Journal of Materials Research 25 (1):39–44.
  • Wang, X. W., G. Liu, Z. G. Chen, F. Li, L. Z. Wang, G. Q. Lu, and H. M. Cheng. 2009. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chemical Communications (23):3452–4.
  • Xu, Y., and M. A. A. Schoonen. 2000. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist 85 (3–4):543–56.
  • Yu, Z. G., C. E. Pryor, W. H. Lau, M. A. Berding, and D. B. MacQueen. 2005. Core-shell nanorods for efficient photoelectrochemical hydrogen production. Journal of Physical Chemistry B 109 (48):22913–9.
  • Zhang, K., D. W. Jing, C. J. Xing, and L. J. Guo. 2007. Significantly improved photocatalytic hydrogen production activity over Cd1-xZnxS photocatalysts prepared by a novel thermal sulfuration method. International Journal of Hydrogen Energy 32 (18):4685–91.
  • Zhang, K., D. Jing, Q. Chen, and L. Guo. 2010. Influence of Sr-doping on the photocatalytic activities of CdS–ZnS solid solution photocatalysts. International Journal of Hydrogen Energy 35 (5):2048–57.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.