935
Views
49
CrossRef citations to date
0
Altmetric
Review Articles

A review on the production of fermentable sugars from lignocellulosic biomass through conventional and enzymatic route—a comparison

, &

References

  • Abbas, A., and S. Ansumali. 2010. Global potential of rice husk as a renewable feedstock for ethanol biofuel production. Bioenergy Research 3:328–34.
  • Adsul, M. G., J. E. Ghule, H. Shaikh, R. Singh, K. B. Bastawde, D. V. Gokhale, and A. J. Varma. 2005. Enzymatic hydrolysis of delignified bagasse polysaccharides. Carbohydrate Polymers 62:6–10.
  • Ahmed, S., S. S. Imdad, and A. Jamil. 2012. Comparative study for the kinetics of extracellular xylanases from Trichoderma harzianum and Chaetomium thermophilum. Electronic Journal of Biotechnology 15 (3):3–3.
  • Alkasrawi, M., T. Eriksson, J. Borjesson, A. Wingren, M. Galbe, F. Tejerneld, and G. Zacchi. 2003. The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enzyme and Microbial Technology 33 (1):71–78.
  • Almeida, J. R. M., M. Betilsson, M. F. Gorwa-Grauslund, S. Gorsich, and G. Liden. 2009. Metabolic effects of furaldehydes and impacts on biotechnological processes. Applied Microbiology and Biotechnology 82:625–38.
  • Alvira, P., E. Tomas-Pejo, M. Ballesteros, and M. J. Negro. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis. Bioresource Technology 101:4851–61.
  • Ando, S., I. Arai, K. Kiyoto, and S. Hanai. 1986. Identification of aromatic monomers in steam-exploded poplar and their influences on ethanol fermentation by Saccharomyces cerevisiae. Journal of Fermentation Technology 64 (6):567–70.
  • Araque, E., C. Parra, J. Freer, D. Contreras, J. Rodrıguez, R. Mendonca, and J. Baeza. 2008. Evaluation of organosolv pretreatment for conversion of Pinus radiata D. Don to ethanol. Enzyme and Microbial Technology 43:214–19.
  • Ballesteros, I., M. J. Negro, J. M. Oliva, A. Cabanas, P. Manzanares, and M. Ballesteros. 2006. Ethanol production from steam explosion pretreated wheat straw. Applied Biochemistry and Biotechnology 130:496–508.
  • Bals, B., C. Rogers, M. Jin, V. Balan, and B. Dale. 2010. Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations. Biotechnology for Biofuels 3:1–11.
  • Banerjee, S., R. Sen, R. A. Pandey, T. Chakrabarti, D. Satpute, B. S. Giri, and S. Mudliar. 2009. Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass and Bioenergy 33:1680–86.
  • Biermann, C. J., T. P. Schultz, and G. D. McGinnis. 1984. Rapid steam hydrolysis/extraction of mixed hardwoods as a biomass pretreatment. Journal of Wood Chemistry and Technology 4 (1):111–28.
  • Binder, J. B., and R. T. Raines. 2010. Fermentable sugars by chemical hydrolysis of biomass. Proceedings of the National Academy of Sciences of the United States of America 107 (10):4516–21.
  • Binod, P., K. Satyanagalakshmi, R. Sindhu, K. U. Janu, R. K. Sukumaran, and A. Pandey. 2012. Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renewable Energy 37:109–16.
  • Black, G. W., J. E. Rixon, J. H. Clarke, G. P. Hazlewood, M. K. Theodorou, P. Morris, and H. J. Gilbert. 1996. Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates. Biochemical Journal 319:515–20.
  • Buffler, C. R.1995. Microwave Cooking and Processing: Engineering Fundamentals for the Food Scientist. New York: Springer.
  • Cadoche, L., and G. D. Lopez. 1989. Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biological Wastes 30:153–57.
  • Cantarella, M., L. Cantarella, A. Gallifuoco, A. Spera, and F. Alfani. 2004. Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnology Progress 20 (1):200–06.
  • Caparros, S., J. Ariza, F. Lopez, J. A. Nacimiento, G. Garrote, and L. Jimenez. 2008. Hydro- thermal treatment and ethanol pulping of sunflower stalks. Bioresource Technology 99:1368–72.
  • Carvalheiro, F., L. C. Duarte, and F. M. Girio. 2008. Hemicellulose biorefineries: A review on biomass pretreatments. Journal of Scientific and Industrial Research 67:849–64.
  • Casebier, R. L., J. Hamilton, and H. L. Hegert. 1969. Chemistry and mechanism of water prehydrolysis of southern pine wood. Tappi 52 (12):2369–77.
  • Chen, W. H., S. C. Ye, and H. K. Sheen. 2012. Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Applied Energy 93:237–44.
  • Cheng, J., H. Su, J. Zhou, W. Song, and K. Cen. 2011. Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark-and photo-fermentation. International Journal of Hydrogen Energy 36:2093–101.
  • Cherubini, F., and S. Ulgiati. 2010. Crop residues as raw materials for biorefinery systems---A LCA case study. Applied Energy 87 (1):47–57.
  • Chu, S., and A. Majumdar. 2012. Opportunities and challenges for a sustainable energy future. Nature 488:294–303.
  • Chundawat, S. P. S., B. Venkatesh, and B. E. Dale. 2007. Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnology and Bioengineering 96 (2):219–31.
  • Converti, A., P. Perego, and J. M. Dominguez. 1999. Xylitol production from hardwood hemicellulose hydrolysates by Pachysolen tannophilus, Debaryomyces hansenii, and Candida guilliermondii. Applied Biochemistry and Biotechnology 82:141–51.
  • Couterier, M., M. Haon, M. Coutinho, B. Henrissat, M. L. Lesage, and J. G. Berrin. 2011. Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Applied and Environmental Microbiology 77 (1):237–46.
  • Cullis, I. F., J. N. Saddler, and S. D. Mansfield. 2004. Effect of initial moisture content and chip size on the bioconversion efficiency of softwood lignocellulosics. Biotechnology and Bioengineering 85 (4):413–21.
  • Davies, G., and B. Henrissat. 1995. Structures and mechanisms of glycosyl hydrolases. Structure 3:853–59.
  • Deguchi, S., S. Mukai, M. Tsudome, and K. Horikoshi. 2006. Facile generation of fullerene nanoparticles by hand-grinding. Advanced Materials 18 (6):729–35.
  • Donghai, S. U., S. Junshe, L. Ping, and L. U. Yanping. 2006. Effects of different pretreatment modes on the enzymatic digestibility of corn leaf and corn stalk. Chinese Journal of Chemical Engineering 14 (6):796–801.
  • Du, X., G. Gellerstedt, and J. Li. 2013. Universal fractionation of lignin---carbohydrate complexes (LCCs) from lignocellulosic biomass: An example using spruce wood. The Plant Journal 74 (2):328–38.
  • Elkins, J. G., B. Raman, and M. Keller. 2010. Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Current Opinion in Biotechnology 21 (5):657–62.
  • Evans, R., R. H. Newman, U. C. Roick, I. D. Suckling, and A. F. A. Wallis. 1995. Changes in cellulose crystallinity during kraft pulping comparison of infrared, X-ray diffraction and solid state NMR results. Holzforschung 49:498–504.
  • Faith, W. L.1945. Development of the Scholler process in the United States. Industrial and Engineering Chemistry Research 37 (1):9–11.
  • Fan, L. T., Y. H. Lee, and D. H. Beardmore. 1980. Mechanism of the enzymatic hydrolysis of cellulose: Effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnology and Bioengineering 22:177–99.
  • Feng, L., and Z. I. Chen. 2008. Research progress on dissolution and functional modification of cellulose in ionic liquids. Journal of Molecular Liquids 142:1–5.
  • Ghosh, A., S. Khanra, M. Mondal, G. Halder, O. N. Tiwari, S. Saini, T. K. Bhowmick, and K. Gayen. 2016. Progress towards isolation of strains and genetically engineered strains of microalgae for production of biofuel and other value added chemicals: A review. Energy Conversion and Management: Accepted113:104–18.
  • Ghosh, P., and T. K. Ghose. 2003. Bioethanol in India: Recent past and emerging future. Advances in Biochemical Engineering /Biotechnology 85:1–27.
  • Girio, F. M., C. Fonseca, F. Carvalheiro, L. C. Duarte, S. Marques, and R. Bogel-Łukasik. 2010. Hemicelluloses for fuel ethanol: A review. Bioresource Technology 101:4775–800.
  • Gregg, D. J., and J. N. Saddler. 1996. Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnology and Bioengineering 51 (4):375–83.
  • Grous, W., A. Converse, H. Grethlein, and L. Lynd. 1985. Kinetics of cellobiose hydrolysis using cellobiase composites from Trichoderma reesei and Aspergilus niger. Biotechnology and Bioengineering 27:463–70.
  • Gupta, R., Y. P. Khasa, and R. C. Kuhad. 2011. Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydrate Polymers 84:1103–09.
  • Gusakov, A. V., A. P. Sinitsyn, A. G. Berlin, A. V. Merkov, and N. V. Ankudimova. 2000. Surface hydrophobic amino acid residues in cellulase molecules as a structural factor responsible for their high denim-washing performance. Enzyme and Microbial Technology 27:664–71.
  • Hadar, Y.2013. Sources for lignocellulosic raw materials for the production of ethanol. In Lignocellulose conversion: Enzymatic and microbial tools for bioethanol, ed. V. Faraco, 21–38. Berlin, Germany: Springer-Verlag Berlin Heidelberg.
  • Haltrich, D., B. Nidetzky, K. D. Kulbe, W. Steiner, and S. Zupancic. 1996. Production of fungal xylanases. Bioresource Technology 58:137–61.
  • Harris, J. F., A. J. Baker, and J. I. Zerbe. 1984. Two stage dilute sulphuric acid hydrolysis of hardwood for ethanol production. Energy Biomass Wastes 8:1151–70.
  • Hartono, S. B., S. Z. Qiao, J. Liu, K. Jack, B. P. Ladewig, Z. Hao, and G. Q. M.Lu. 2010. Functionalized mesoporous silica with very large pores for cellulase immobilization. Journal of Physical Chemistry C 114 (18):8353–62.
  • Harun, M. Y., A. B. D. Radiah, Z. Z. Abidin, and R. Yunus. 2011. Effect of physical pretreatment on dilute acid hydrolysis of water hyacinth (Eichhornia crassipes). Bioresource Technology 102:5193–99.
  • Hashem, A. M., and M. M. Rashad. 1993. Production of ethanol by yeasts grown on hydrolyzate of Egyptian sweet potato. Egyptian Journal of Food Science 21 (2):171–80.
  • Hideno, A., H. Inoue, K. Tsukahara, S. Fujimoto, T. Minowa, S. Inoue, T. Endo, and S. Sawayama. 2009. Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresource Technology 100 (10):2706–11.
  • Hill, J., E. Nelson, D. Tilman, S. Polasky, and D. Tiffany. 2006. Environmental, economic and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences of the United States of America 103 (30):11206–10.
  • Hoadley, R. B.2000. Understanding Wood: A Craftsman’s Guide to Wood Technology. Newtown, CT: Taunton Press.
  • Holtzapple, M. T., J. H. Jun, G. Ashok, S. L. Patibandla, and B. E. Dale. 1991. The ammonia freeze explosion process- A practical lignocellulose pretreatment. Applied Biochemistry and Biotechnology 28 (9):59–74.
  • Holtzapple, M. T., J. E. Lundeen, R. Sturgis, J. E. Lewis, and B. E. Dale. 1992. Pretreatment of lignocellulosic municipal solid-waste by ammonia fiber explosion (AFEX). Applied Biochemistry and Biotechnology 34 (5):5–21.
  • Hsu, T., M. R. Ladisch, and G. Tsao. 1980. Alcohol from cellulose. Chemical Technology 10 (5):315–19.
  • Hu, Z., M. Foston, and A. J. Ragauskas. 2011. Comparative studies on hydrothermal pretreatment and enzymatic saccharification of leaves and internodes of alamo switchgrass. Bioresource Technology 102:7224–31.
  • Hu, Z., and Z. Wen. 2008. Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochemical Engineering Journal 38:369–78.
  • Huanguang, Q., H. Jikun, Y. Jun, R. Scott, Z. Yuhua, Z. Yahui, and Z. Yanli. 2010. Bioethanol development in China and the potential impacts on its agricultural economy. Applied Energy 87:76–83.
  • Intanakul, P., M. Krairis, and P. Kitchaiya. 2003. Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. Journal of Wood Chemistry and Technology 23 (2):217–25.
  • Iranmahboob, J., F. Nadim, and S. Monemi. 2002. Optimizing acid-hydrolysis: A critical step for production of ethanol from mixed wood chips. Biomass and Bioenergy 22:401–04.
  • Jinghua, L., D. Likai, and W. Lushan. 2010. Glycosidic-bond hydrolysis mechanism catalyzed by cellulase Cel7A from Trichoderma reesei: A comprehensive theoretical study by performing MD, QM, and QM/MM calculations. Journal of Physical Chemistry B 114:15261–68.
  • Jingli, L., W. Xuemei, and X. Dingguo. 2010. QM/MM study on the catalytic mechanism of cellulose hydrolysis catalyzed by cellulase Cel5A from Acidothermus cellulolyticus. Journal of Physical Chemistry B 114:1462–70.
  • Jonsson, L. L., B. Alriksson, and N.-O.Nilvebrant.2013. Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnology for Biofuels 6 (16):1–10.
  • Karboune, S., L. Lhocine, J. Anthoni, P. A. Gerarert, and S. Kermasha. 2009. Properties of selected hemicellulases of a multi-enzymatic system from Penicillium funiculosum. Bioscience Biotechnology and Biochemistry 73 (6):1286–92.
  • Karimi, K., S. Kheradmandinia, and M. J. Taherzadeh. 2006. Conversion of rice straw to sugars by dilute acid hydrolysis. Biomass and Bioenergy 30 (3):247–53.
  • Karunanithy, C., and K. Muthukumarappan. 2011a. Influence of extruder and feedstock variables on torque requirement during pretreatment of different types of biomass---A response surface analysis. Biosystems Engineering 109:37–51.
  • Karunanithy, C., and K. Muthukumarappan. 2011b. Optimization of alkali soaking and extrusion pretreatment of prairie cord grass for maximum sugar recovery by enzymatic hydrolysis. Biochemical Engineering Journal 54:71–82.
  • Keshwani, D. R., and J. J. Cheng. 2009. Switchgrass for bioethanol and other value-added applications: A review. Bioresource Technology 100:1515–23.
  • Kim, J. S., Y. Y. Lee, and S. C. Park. 2000. Pretreatment of wastepaper and pulp mill sludge by aqueous ammonia and hydrogen peroxide. Applied Biochemistry and Biotechnology 84 (86):129–39.
  • Klinke, H. B., B. K. Ahring, A. S. Schmidt, and A. B. Thomsen. 2002. Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresource Technology 82:15–26.
  • Koostra, A. M. J., N. S. Mosier, E. L. Scott, H. H. Beeftink, and J. P. M. Sanders. 2009. Differential effects of minerals and organic acids on the kinetics of arabinose degradation under lignocellulose pretreatment conditions. Biochemical Engineering Journal 43:92–97.
  • Koradiya, M., S. Duggirala, D. Tipre, and S. Dave. 2016. Pretreatment optimization of Sorghum pioneer biomass for bioethanol production and its scale-up. Bioresource Technology 199:142–47.
  • Kovacs, K., S. Macrelli, G. Szakacs, and G. Zacchi. 2009. Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnology for Biofuels 2 (14):1–11.
  • Kroqh, K. B., A. Morkeberq, H. Jorgensen, J. C. Frisvad, and L. Olsson. 2004. Screening genus penicillium for producers of cellulolytic and xylanolytic enzymes. Applied Biochemistry and Biotechnology 113:389–401.
  • Kumar, M., and K. Gayen. 2011. Developments in bio-butanol production: New insights. Applied Energy 88:1999–2010.
  • Kumar, M., and K. Gayen. 2012. Biobutanol: The future biofuel, biomass conversion: the Interface of biotechnology. In Chemistry and Materials Science, ed. C. Baskar, S. Baskar, and R. Dhillon. Germany, New York: Springer-Verlag, pp. 221–236.
  • Kumar, M., K. Gayen, and S. Saini. 2013. Role of extracellular cues to trigger the metabolic phase shifting from acidogenesis to solventogenesis in Clostridium acetobutylicum. Bioresource Technology 138:55–62.
  • Kumar, M., Y. Goyal, A. Sarkar, and K. Gayen. 2012. Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks. Applied Energy 93:193–204.
  • Kumar, M., S. Saini, and K. Gayen. 2014a. Acetone-Butanol-Ethanol (ABE) fermentation analysis using only high performance liquid chromatography. Analytical Methods 6 (3):774–81.
  • Kumar, M., S. Saini, and K. Gayen. 2014b. Elementary mode analysis reveals that Clostridium acetobutylicum modulates its metabolic strategy under external stress. Molecular Biosystems 10 (8):2090–105.
  • Kumar, P., D. M. Barrett, M. J. Delwiche, and P. Stroeve. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research 48:3713–29.
  • Ladisch, M. R., M. C. Flickinger, and G. T. Tsao. 1979. Fuels and chemicals from biomass. Energy 4 (2):263–75.
  • Ladisch, M. R., K. W. Lin, M. Voloch, and G. T. Tsao. 1983. Process considerations in the enzymatic hydrolysis of biomass. Enzyme and Microbial Technology 5:82–102.
  • Lamsal, B., J. Yoo, K. Brijwani, and S. Alavi. 2010. Extrusion as a thermo-mechanical pre-treatment for lignocellulosic ethanol. Biomass and Bioenergy 34:1703–10.
  • Larsson, S., E. Palmqvist, B. Hahn-Hagerdal, C. Tengborg, K. Stenberg, G. Zacchi, and N. O. Nilvebrant. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology 24:151–59.
  • Larsson, S., A. Quintana-Sainz, A. Reimann, N. O. Nilvebrant, and L. J. Jonsson. 2000. Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology 84 (6):617–32.
  • Laser, M., D. Schulman, S. Allen, J. Lichwa, M. J. Antal, and L. E. Lynd. 2002. A comparison of liquid hot water and steam pretreatments of sugarcane bagasse for conversion to ethanol. Bioresource Technology 81:33–44.
  • Lee, S. B., I. H. Kim, D. Y. R. Ryu, and H. Taguchi. 1983. Structural properties of cellulose and cellulase reaction mechanism. Biotechnology and Bioengineering 25:33–51.
  • Lee, S. H., Y. Teramoto, and T. Endo. 2009. Enzymatic saccharification of woody biomass micro/nanofibrillated by continuous extrusion process I–Effect of additives with cellulose affinity. Bioresource Technology 100 (1):275–79.
  • Li, H., Y. Pu, R. Kumar, A. J. Ragauskas, and C. E. Wyman. 2014. Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanism. Biotechnology and Bioengineering 111 (3):485–92.
  • Li, M. F., Y. M. Fan, F. Xu, R. C. Sun, and X. L. Zhang. 2010. Cold sodium hydroxide/urea based pretreatment of bamboo for bioethanol production: Characterization of the cellulose rich fraction. Industrial Crops and Products 32 (3):551–59.
  • Limayem, A., and S. C. Ricke. 2012. Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science 38:449–67.
  • Liu, J., Z. Sun, and H. Gerken. 2014. Recent Advances in Microalgal Biotechnology. Foster City, CA: OMICS Group International.
  • Lopez-Arenas, T., P. Rathi, E. Ramirez-Jimenez, and M. Sales-Cruz. 2010. Factors affecting the acid pretreatment of lignocellulosic biomass: Batch and continuous process. In Computer Aided Chemical Engineering, S. Pierucci and G. Buzzi Ferraris, (eds.), Amsterdam: Elseiver, 979–84.
  • Lozano, P., B. Bernal, J. M. Bernal, M. Pucheault, and M. Vaultier. 2011. Stabilizing immobilized cellulase by ionic liquids for saccharification of cellulose solutions in 1-butyl-3-methylimidazolium chloride. Green Chemistry 13:1406–10.
  • Lu, X., K. Yamauchi, N. Phaiboonsilpa, and S. Saka. 2009. Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water. Journal of Wood Science 55:367–75.
  • Lu, X., Y. Zhang, and I. AngelidakiI. 2009. Optimization of H2SO4 catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: Focusing on pretreatment at high solids content. Bioresource Technology 100:3048–53.
  • Lu, Y., B. Yang, D. Gregg, J. N. Saddler, and S. D. Mansfield. 2002. Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Applied Biochemistry and Biotechnology 98:641–54.
  • Ma, X. J., S. L. Cao, L. Lin, X. L. Luo, H. C.Hu, L. H. Chen, and L. L. Huang. 2013. Hydrothermal pretreatment of bamboo and cellulose degradation. Bioresource Technology 148:408–13.
  • Mackie, K. L., H. H. Brownell, K. L. West, and J. N. Saddler. 1985. Effect of sulphur dioxide and sulfuric acid on steam explosion of aspenwood. Journal of Wood Chemistry and Technology 5 (3):405–25.
  • Mais, U., A. R. Esteghlalian, J. N. Saddler, and S. D. Mansfield. 2002. Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling. Appled Biochemistry and Biotechnology 98:815–32.
  • Maitan-Alfenas, G. P., E. M. Visser, and V. M. Guimarães. 2015. Enzymatic hydrolysis of lignocellulosic biomass: Converting food waste in valuable products. Current Opinion in Food Science 1:44–49.
  • Malmstrom, E., and A. Carlmark. 2012. Controlled grafting of cellulose fibers – an outlook beyond paper and cardboard. Polymer Chemistry 3:1702–13.
  • Martın, C., H. B. Klinke, and A. B. Thomsen. 2007. Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme and Microbial Technology 40:426–32.
  • Martinez, A., M. E. Rodriguez, S. W. York, J. F. Preston, and L. O. Ingram. 2000. Effects of Ca(OH)2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnology and Bioengineering 69 (5):526–36.
  • McCarter, S. L., W. S. Adney, T. B. Vinzant, E. Jennings, F. P. Eddy, S. R. Decker, J. O. Baker, J. Sakon, and M. E. Himmel. 2002. Exploration of cellulose surface-binding properties of Acidothermus cellulyticus Cel 5A by site specific mutagenesis. Applied Biochemistry and Biotechnology 98:273–87.
  • Mclntosh, S., and T. Vancov. 2010. Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresource Technology 101:6718–27.
  • Meyer, K. H., and L. Misch. 1937. Positions des atomes dans le nouveau modèle spatial de la cellulose. Helvetica Chimica Acta 20:232–44.
  • Mielenz, J. R.2001. Ethanol production from biomass: Technology and commercialization status. Current Opinion in Microbiology 4:324–29.
  • Mishra, V. S., V. V. Mahajani, and J. B. Joshi. 1995. Wet air oxidation. Industrial & Engineering Chemistry Research 34:2–48.
  • Mood, S. H., A. M. Golfeshan, M. Tabatabaei, G. S. Jouzani, G. H. Najaf, M. Gholami, and M. Ardjmand. 2013. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews 27:77–93.
  • Moreira, L. R., and E. X. Filho. 2008. An overview of mannan structure and mannan-degrading enzyme systems. Applied Microbiology and Biotechnology 79 (2):165–78.
  • Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, and M. Ladisch. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96:673–86.
  • Mussatto, S. I., and I. C. Roberto. 2004. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: A review. Bioresource Technology 93:1–10.
  • Naik, S. N., V. V. Goud, P. K. Rout, and A. K. Dalai. 2010. Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews 14:578–97.
  • Nazhad, M. M., L. P. Ramos, L. Paszner, and J. N. Saddler. 1995. Structural constraints affecting the initial enzymatic hydrolysis of recycled paper. Enzyme and Microbial Technology 17:68–74.
  • Nisizawa, K.1973. Mode of action of cellulases. Journal of Fermentation Technology 51:267–73.
  • Nlewem, K. C., and M. E. T. Jr. 2010. Comparison of different pretreatment methods based on residual lignin effect on the enzymatic hydrolysis of switchgrass. Bioresource Technology 101:5426–30.
  • Oh, K. K., Y. S. Kim, H. H. Yoon, and B. S. Tae. 2002. Pretreatment of lignocellulosic biomass using combination of ammonia recycled percolation and dilute-acid process. Journal of Industrial and Engineering Chemistry 8 (1):64–70.
  • Ohgren, K., R. Bura, G. Lesnicki, J. Saddler, and G. Zacchi. 2007. A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochemistry 42:834–39.
  • Palmqvist, E., J. S. Almeida, and B. Hahn-Hagerdal. 1999. Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnology and Bioengineering 62 (4):447–54.
  • Palmqvist, E., and B. Hahn-Hagerdal. 2000. Fermentation of lignocellulosic hydrolysates: Inhibition and detoxification. Bioresource Technology 74:17–24.
  • Palmqvist, E., and B. Hahn-Hägerdal. 2000. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresource Technology 74 (1):25–33.
  • Pan, X., N. Gilkes, and J. N. Saddler. 2006. Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates. Holzforschung 60:398–401.
  • Perez, J. A., I. Ballesteros, M. Ballesteros, F. Saez, M. J. Negro, and P. Manzanares. 2008. Optimization liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel–ethanol production. Fuel 87:3640–47.
  • Pinkert, A., K. N. Marsh, S. Pang, and M. P. Staiger. 2009. Ionic liquids and their interaction with cellulose. Chemical Reviews 109 (12):6712–28.
  • Qureshi, N., and G. J. Manderson. 1995. Bioconversion of renewable resources into ethanol: An economic evaluation of selected hydrolysis, fermentation and membrane technologies. Energy Sources 17:241–65.
  • Rabinovich, M. L., M. S. Melnik, and A. V. Boloboba. 2002. Microbial cellulases (Review). Applied Biochemistry and Microbiology 38 (4):305–21.
  • Ramos, L. P., C. Breuil, and J. N. Saddler. 1992. Comparison of steam pretreatment of eucalyptus, aspen, and spruce wood chips and their enzymatic hydrolysis. Applied Biochemistry and Biotechnology 34/35:37–48.
  • Redding, A. P., Z. Wang, D. R. Keshwani, and J. J. Cheng. 2011. High temperature dilute acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis. Bioresource Technology 102:1415–24.
  • Rivarolo, M., D. Bellotti, L. Magistri, and A. F. Massardo. 2016. Feasibility study of methanol production from different renewable sources and thermo-economic analysis. International Journal of Hydrogen Energy: Accepted41:2105–16.
  • Ruiz, E., C. Cara, P. Manzanares, M. Ballesteros, and E. Castro. 2008. Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzyme and Microbial Technology 42:160–66.
  • Ruiz, H. A., R. M. Rodrıguez-Jasso, B. D. Fernandes, A. A. Vicente, and J. A. Teixeira. 2013. Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review. Renewable Sustainable Energy Reviews 21:35–51.
  • Sasaki, M., T. Adschiri, and K. Arai. 2003. Fractionation of sugarcane bagasse by hydrothermal treatment. Bioresource Technology 86:301–04.
  • Saxena, A., A. Saxena, and S. Yadav. 2011. A kinetic study on cellulase enzymes from Aspergillus niger. International Journal of Pharma and Bio Sciences 2 (3):36–40.
  • Selig, M. J., S. Viamajala, S. R. Decker, M. P. Tucker, M. E. Himmel, and T. B. Vinzant. 2007. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnology Progress 23 (6):1333–41.
  • Shafaq, A., M. A. Malana, N. Ikram, M. I. Ghori, K. Y. Butt, and S. Ahmed. 2004. Kinetic study of carboxymethylcellulase from Trichoderma reesei. Pakistan Journal of Life and Social Sciences 2 (2):1–4.
  • Shafiei, M., K. Karimi, and M. J. Taherzadeh. 2010. Pretreatment of spruce and oak by N-methylmorpholine-N-oxide (NMMO) for efficient conversion of their cellulose to ethanol. Bioresource Technology 101:4914–18.
  • Silva, A. S. D., H. Inoue, T. Endo, S. Yano, and E. P. S. Bon. 2010. Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresource Technology 101:7402–09.
  • Sinegani, A. A. S., G. Emtiazi, and H. Shariatmadari. 2005. Sorption and immobilization of cellulase on silicate clay minerals. Journal of Colloid and Interface Science 290:39–44.
  • Singh, S., S. Khanna, V. S. Moholkar, and A. Goyal. 2014. Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels. Applied Energy 129:195–206.
  • Singh, S., B. A. Simmons, and K. P. Vogel. 2009. Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnology and Bioengineering 104 (1):68–75.
  • Sinnoh, M. L.1990. Catalytic mechanisms of enzymic glycosyl transfer. Chemical Reviews 90 (7):1171–202.
  • Sun, Y., and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology 83:1–11.
  • Swatloski, R. P., S. K. Spear, J. D. Holbrey, and R. D. Rogers. 2002. Dissolution of cellulose with ionic liquids. Journal of the American Chemical Society 124 (18):4974–75.
  • Takimoto, A., T. Shiomi, K. Ino, T. Tsunoda, A. Kawai, F. Mizukami, and K. Sakaguchi. 2008. Encapsulation of cellulase with mesoporous silica (SBA-15). Microporous and Mesoporous Materials 116:601–06.
  • Talebnia, F., D. Karakashev, and I. Angelidaki. 2010. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology 101:4744–53.
  • Taqieddin, E., and M. Amiji. 2004. Enzyme immobilization in novel alginate–chitosan core-shell microcapsules. Biomaterials 25:1937–45.
  • Teeri, T., and G. Henriksson. 2009. Pulp and paper chemistry and technology. In Wood chemistry and wood biotechnology, ed. E. Monica, G. Goran, and H. Gunnar, 245–70. Berlin, Germany: Walter de Gruyter GmbH & Co. KG.
  • Thompson, D. N., H. C. Chen, and H. E. Grethlein. 1992. Comparison of pretreatment methods on the basis of available surface area. Bioresource Technology 39:155–63.
  • Tomas-Pejo, E., J. M. Olive, and M. Ballesteros. 2008. Realistic approach for full-scale bioethanol production from lignocellulose: A review. Journal of Scientific and Industrial Research 67:874–84.
  • Torget, R., M. Himmel, J. D. Wright, and K. Grohmann. 1988. Initial design of a dilute sulfuric acid pretreatment process for aspen wood chips. Applied Biochemistry and Biotechnology 17:89–95.
  • Tu, M., X. Zhang, A. Kurabi, A. Gilkes, W. Mabee, and J. Saddler. 2006. Immobilization of beta-glucosidase on Eupergit C for lignocellulose hydrolysis. Biotechnology Letter 28 (3):151–57.
  • Ulbricht, R. J., J. Sharon, and J. Thomas. 1984. A review of 5-hydroxymethylfurfural (HMF) in parental solutions. Fundamental and Applied Toxicology 4:843–53.
  • Villarreal, M. L. M., A. M. R. Prata, M. G. A. Felipe, E. Almeida, and J. B. A. E. Silva. 2006. Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme and Microbial Technology 40:17–24.
  • Walsum, G. P. V., S. G. Allen, M. J. Spenser, M. S. Laser, M. J. Antal, and L. E. Lynd. 1996. Conversion of lignocellulosics pretreated with liquid hot water to ethanol. Applied Biochemistry and Biotechnology 57 (58):157–70.
  • Wan, C., Y. Zhou, and Y. Li. 2011. Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Bioresource Technology 102:6254–59.
  • Wang, L., M. Yang, X .Fan, X. Zhu, T. Xu, and Q. Yuan. 2011. An environmentally friendly and efficient method for xylitol bioconversion with high-temperature-steaming corncob hydrolysate by adapted Candida tropicalis. Process Biochemistry 46:1619–26.
  • Wang, Z., D. R. Keshwani, A. P. Redding, and J. J. Cheng. 2010. Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass. Bioresource Technology 101:3583–85.
  • Weiqi, W., W. Shubin, and L. Liguo. 2013. Combination of liquid hot water pretreatment and wet disk milling to improve the efficiency of the enzymatic hydrolysis of eucalyptus. Bioresource Technology 128:725–30.
  • Wright, J. D.1988. Ethanol from lignocellulose: An overview. Energy Progress 18 (2):71–80.
  • Wu, L., X. Yuan, and J. Sheng. 2005. Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. Journal of Membrane Science 250 (1):167–73.
  • Wyman, C. E.1994. Ethanol from lignocellulosic biomass: Technology, economics and opportunities. Bioresource Technology 50 (1):1959–66.
  • Wyman, C. E.1996. Ethanol production from lignocellulosic biomass: Overview. In Handbook on bioethanol: Production and utilization, ed. C. E. Wyman, 1–16. Washington, DC: Taylor & Francis.
  • Wyman, C. E., B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch, and Y. Y. Lee. 2005. Coordinated development of leading biomass pretreatment technologies. Bioresource Technology 96:1959–66.
  • Xiao, Z., X. Zhang, D. J. Gregg, and J. Saddler. 2004. Effects of sugar inhibition on cellulases and beta glucosidase during enzymatic hydrolysis of softwood substrates. Applied Biochemistry and Biotechnology 113-116:1115–26.
  • Yang, B., Z. Dai, S. Y. Ding, and C. E. Wymam. 2011. Enzymatic hydrolysis of cellulosic biomass. Biofuels 2 (4):421–50.
  • Yoo, J., S. Alavi, P. Vadlani, and V. Amanor-Boadu. 2011. Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars. Bioresource Technology 102 (16):7583–90.
  • Yu, Q., X. Zhuang, S. Lv, M. He, Y. Zhang, Z. Yuan, W. Qi, Q. Wang, W. Wang, and X. Tan. 2013. Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methods for the sugar recovery and structural changes. Bioresource Technology 129:592–98.
  • Yu, Q., X. Zhuang, Q. Wang, W. Qi, X. Tan, and Z. Yuan. 2012. Hydrolysis of sweet sorghum bagasse and eucalyptus wood chips with liquid hot water. Bioresource Technology 116:220–25.
  • Zavrel, M., D. Bross, M. Funke, J. Büchs, and A. C. Spiess. 2009. High-throughput screening for ionic liquids dissolving lignocellulose. Bioresource Technology 100 (9):2580–87.
  • Zhang, M., C. Eddy, K. Deanda, M. Finkelstein, and S. Picataggio. 1995. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–43.
  • Zhang, Y. H. P., M. E. Himmel, and J. R. Mielenz. 2006. Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances 24:452–81.
  • Zhang, Y. P., and L. R. Lynd. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering 88 (7):797–824.
  • Zhao, X., K. Cheng, and D. Liu. 2009. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology 82:815–27.
  • Zheng, Y., H. Lin, and G. T. Tsao. 1998. Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnology Progress 14 (6):890–96.
  • Zhong, C., M. W. Lau, V. Balan, B. E. Dale, and Y. J. Yuan. 2009. Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw. Applied Microbiology and Biotechnology 84:667–76.
  • Zhu, J. Y., X. Pan, and R. S. Zalesny Jr. 2010. Pretreatment of woody biomass for biofuel production: Energy efficiency, technologies, and recalcitrance. Applied Microbiology and Biotechnology 87:847–57.
  • Zhu, J. Y., and X. J. Pan. 2010. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresource Technology 101:4992–5002.
  • Zhuang, X., W. Wang, Q. Yu, W. Qi, Q. Wang, X. Tan, G. Zhou, and Z. Yuan. 2016. Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresource Technology 199:68–75.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.