227
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Steam reforming of glycerol for syngas generation under cold plasma conditions: A DFT study

&

References

  • Adhikari, S., S.D. Fernando, and A. Haryanto. 2008. Hydrogen production from glycerin by steam reforming over nickel catalysts. Renewable Energy 33:1097–1100.
  • Bauerfeldt, G.F., L.M.M. de Albuquerque, G. Arbilla, and E.C. da Silva. 2002. Unimolecular reactions on formaldehyde S0 PES. Journal of Molecular Structure 580:147–60.
  • Behr, A., J. Eilting, K. Irawadi, J. Leschinski, and F. Lindner. 2008. Improved utilisation of renewable resources: New important derivatives of glycerol. Green Chemistry 10:13–30.
  • Bo, Z., J. Yan, X. Li, Y. Chi, and K. Cen. 2008. Plasma-assisted dry methane reforming using gliding arc gas discharge: Effect of feed gases proportion. International Journal of Hydrogen Energy 55:3929–40.
  • Buffoni, I.N., F. Pompeo, G.F. Santori, and N.N. Nichio. 2009. Nickel catalysts applied in steam reforming of glycerol for hydrogen production. Catalysis Communications 10:1656–60.
  • Callam, C.S., S.J. Singer, T.L. Lowary, and C.M. Hadad. 2001. Computational analysis of the potential energy surfaces of glycerol in the gas and aqueous phases: Effects of level of theory, basis set, and solvation on strongly intramolecularly hydrogen-bonded systems. Journal of the American Chemical Society 123:11743–54.
  • Cieplak, A.S. 1981. Stereochemistry of nucleophilic addition to cyclohexanone, the importance of two-electron stabilizing interactions. Journal of the American Chemical Society 103:4540–52.
  • Cui, Y., V. Galvita, L. Rihko-Struckmann, H. Lorenz, and K. Sundmacher. 2009. Steam reforming of glycerol: The experimental activity of La1−xCexNiO3 catalyst in comparison to the thermodynamic reaction equilibrium. Applied Catalysis B: Environmental 90:29–37.
  • Czernichowski, A. 2009. Conversion of waste glycerol into synthesis gas. In 19th International Symposium on Plasma Chemistry (ISPC-19), Bochum, Germany. 26–31.
  • Delley, B. 1990. An all-electron numerical method for solving the local density functional for polyatomic molecules. The Journal of Chemical Physics 92:508–17.
  • Delley, B. 1996. Fast calculation of electrostatics in crystals and large molecules. The Journal of Physical Chemistry 100:6107–10.
  • Delley, B. 2000. From molecules to solids with the DMol3 approach. The Journal of Chemical Physics 113:7756–64.
  • Ghorbanzadeh, A.M., R.Lotfalipour, and S.Rezaei. 2009. Carbon dioxide reforming of methane at near room temperature in low energy pulsed plasma. International Journal of Hydrogen Energy 139:101–08.
  • Halgren, T.A., and W.N. Lipscomb. 1977. The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chemical Physics Letters 49:225–32.
  • Henkelman, G., and H. Jónsson. 2000. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. The Journal of Chemical Physics 113:9978–85.
  • Iriondo, A., V.L. Barrio, J.F. Cambra, P.L. Arias, M.B. Güemez, R.M. Navarro, M.C. Sanchez-Sanchez, and J.L.G. Fierro. 2009. Influence of La2O3 modified support and Ni and Pt active phases on glycerol steam reforming to produce hydrogen. Catalysis Communications 10:1275–78.
  • Jalbout, A.F., and C.M. Chang. 2003. The H2CO potential energy surface: Advanced ab initio and density functional theory study. Journal of Molecular Structure 634:127–35.
  • Kado, S., K. Urasaki, Y. Sekine, K. Fujimoto, T. Nozaki, and K. Okazaki. 2003. Reaction mechanism of methane activation using non-equilibrium pulsed discharge at room temperature. Fuel 45:601–10.
  • Kale, G.R. and B.D. Kulkarni. 2010. Thermodynamic analysis of dry autothermal reforming of glycerol. Fuel Processing Technology 91:520–30.
  • Kwak, J.H., J. Szanyi, and C.H.F. Peden. 2004. Non-thermal plasma-assisted NOx reduction over alkali and alkaline earth ion exchanged Y, FAU zeolites. Catalysis Today 220:291–98.
  • Nash, J.J., and J.S. Francisco. 1998. Unimolecular decomposition pathways of dimethyl ether: An ab initio study. The Journal of Physical Chemistry A 102:236–41.
  • Nozaki, T., A. Hattori, and K. Okazaki. 2004. Partial oxidation of methane using a microscale non-equilibrium plasma reactor. Catalysis Today 136:265–70.
  • Pan, Y.X. and C.J.L. You Han. 2007. Pathways for steam reforming of dimethyl ether under cold plasma conditions: A DFT study. Fuel 86:2300–307.
  • Perdew, J.P., and Y. Wang. 1986. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical Review B 33:8800–802.
  • Perdew, J.P., and Y. Wang. 1992. Accurate and simple analytic representation of the electron–gas correlation energy. Physical Review B 45:13244–49.
  • Petitpas, G., J.D. Rollier, A. Darmon, J. Gonzalez-Aguilar, R. Metkemeijer, and L. Fulcheri. 2007. A comparative study of non-thermal plasma assisted reforming technologies. International Journal of Hydrogen Energy 106:59–71.
  • Rennard, D., J. Kruger, and L. Schmidt. 2009. Autothermal catalytic partial oxidation of glycerol to syngas and to non-equilibrium products. ChemSusChem 2:89–98.
  • Sáchez, E.A., M.A. D’Angelo, and R.A. Comelli. 2010. Hydrogen production from glycerol on Ni/Al2O3 catalyst. International Journal of Hydrogen Energy 35:5902–907.
  • Slinn, M., K. Kendall, C. Mallon, and J. Andrews. 2008. Steam reforming of biodiesel by-product to make renewable hydrogen. Bioresource Technology 99:5851–58.
  • Terentis, A.C. and S.H. Kable. 1996. Near threshold dynamics and dissociation energy of the reaction H2CO→HCO + H. Chemical Physics Letters 258:626–32.
  • Valliyappan, T., D. Ferdous, N. Bakhshi, and A. Dalai. 2008. Production of hydrogen and syngas via steam gasification of glycerol in a fixed-bed reactor. Topics in Catalysis 49:59–67.
  • Wang, W.J. 2010. Thermodynamic analysis of glycerol partial oxidation for hydrogen production. Fuel Processing Technology 91:1401–08.
  • Wang, X., M. Li, M. Wang, H. Wang, S. Li, S. Wang, and X. Ma. 2009a. Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production. Fuel 88:2148–53.
  • Wang, H., X. Wang, M. Li, S. Li, S. Wang, and X. Ma. 2009b. Thermodynamic analysis of hydrogen production from glycerol autothermal reforming. International Journal of Hydrogen Energy 34:5683–90.
  • Wang, W.J., C.Y. Zhu, and Y.Y. Cao. 2010. DFT study on pathways of steam reforming of ethanol under cold plasma conditions for hydrogen generation. International Journal of Hydrogen Energy 35:1951–56.
  • Webster, B. 1975. Ab-initio studies into the mechanisms of formation of the hydrated electron. The Journal of Physical Chemistry 79:2809–14.
  • Yan, Z.C., C. Li, and W.H. Lin. 2009. Hydrogen generation by glow discharge plasma electrolysis of methanol solutions. International Journal of Hydrogen Energy 242:166–69.
  • Zhu, X., T. Hoang, L.L. Lobban, and R.G. Mallinson. 2009. Plasma reforming of glycerol for synthesis gas production. Chemical Communications 20:2908–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.