439
Views
33
CrossRef citations to date
0
Altmetric
Review Articles

Producing biogas from agricultural residues generated during phytoremediation process: Possibility, threshold, and challenges

&

References

  • Abhilash, P.C., and M. Yunus. 2011. Can we use biomass produced from phytoremediation? Biomass and Bioenergy 35:1371–72.
  • Andersson-Sköld, Y., A. Hagelqvist, G. Crutu, and S. Blom. 2014. Bioenergy grown on contaminated land – a sustainable bioenergy contributor? Biofuels 5:487–98.
  • Ashekuzzaman, S.M. and T.G. Poulsen. 2011. Optimizing feed composition for improved methane yield during anaerobic digestion of cow manure based waste mixtures. Bioresour. Technol. 102:2213–18.
  • Bayr, S., O. Pakarinen, A. Korppoo, S. Liuksia, A. Väisänen, P. Kaparaju, and J. Rintala. 2012. Effect of additives on process stability of mesophilic anaerobic monodigestion of pig slaughterhouse waste. Bioresource Technology 120:106–13.
  • Bellarby, J., M. Wattenbach, G. Tuck, M.J. Glendining, and P. Smith. 2010. The potential distribution of bioenergy crops in the UK under present and future climate. Biomass and Bioenergy 34:1935–45.
  • Brooks, R.R., M.F. Chambers, L.J. Nicks, and B.H. Robinson. 1998. Phytomining. Trends in Plant Science 3:359–62.
  • Cao, Z., S. Wang, T. Wang, Z. Chang, Z. Shen, and Y. Chen. 2015. Using contaminated plants involved in phytoremediation for anaerobic digestion. International Journal of Phytoremediation 17:201–7.
  • Carrier, M., A. Loppinet-Serani, C. Absalon, F. Marias, C. Aymonier, and M. Mench. 2011. Conversion of fern (Pterisvittata L.) biomass from a phytoremediation trial in sub-and supercritical water conditions. Biomass and Bioenergy 35:872–83.
  • Chen, Y., J.J. Cheng, and K.S. Creamer. 2008. Inhibition of anaerobic digestion process: A review. Bioresource Technology 99:4044–64.
  • Cherubini, F., and S. Ulgiati. 2010. Crop residues as raw materials for biorefinery systems—An LCA case study. Applied Energy 87:47–57.
  • Ghosh, M., and S.P.Singh. 2005. A review on phytoremediation of heavy metals and utilization of its by-products. Asian Journal on Energy and Environment 6:214–31.
  • Gomes, H.I. 2012. Phytoremediation for bioenergy: Challenges and opportunities. Environmental Technology Reviews 1:59–66.
  • Jaffre, T., R.R. Brooks, J. Lee, and R.D. Reeves. 1976. Sebertiaacumip a nickel-accumulating plant from New Caledonia. Science (80-) 193:579–80.
  • Keller, C., C. Ludwig, F. Davoli, and J. Wochele. 2005. Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction. Environmental Science and Technology 39:3359–67.
  • Kirkham, M.B. 2006. Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma 137:19–32.
  • Koppolu, L., F. A. Agblevor, and L. D. Clements. 2003. Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part II: Lab-scale pyrolysis of synthetic hyperaccumulator biomass. Biomass and Bioenergy 25:651–63.
  • Koppolu, L., and L.D. Clements. 2003. Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part I: Preparation of synthetic hyperaccumulator biomass. Biomass and Bioenergy 24:69–79.
  • Koppolu, L., R. Prasad, and L.D. Clements. 2004. Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part III: Pilot-scale pyrolysis of synthetic hyperaccumulator biomass. Biomass and Bioenergy 26:463–72.
  • Li, W.W., and H.-Q. Yu. 2011. From wastewater to bioenergy and biochemicals via two-stage bioconversion processes: A future paradigm. Biotechnology Advances 29:972–982.
  • Marchiol, L., S.Assolari, P. Sacco, and G. Zerbi. 2004. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanussativus) grown on multicontaminated soil. Environmental Pollution 132:21–27.
  • Meers, E., S. Van Slycken, K. Adriaensen, A. Ruttens, J. Vangronsveld, G. Du Laing, N. Witters, T. Thewys, F.M.G. Tack. 2010. The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: A field experiment. Chemosphere 78:35–41.
  • Miranda, A.F., N. Muradov, A. Gujar, T. Stevenson, D. Nugegoda, A.S. Ball, A. Mouradov. 2014. Application of aquatic plants for the treatment of selenium-rich mining wastewater and production of renewable fuels and petrochemicals.
  • Moestedt, J., E. Nordell, S.S. Yekta, J. Lundgren, M. Martí, C. Sundberg, J. Ejlertsson, B.H. Svensson, A. Björn. 2016. Effects of trace element addition on process stability during anaerobic co-digestion of OFMSW and slaughterhouse waste.
  • Nkrumah, P.N., A.J.M. Baker, R.L.Chaney, P.D. Erskine, G. Echevarria, J.L. Morel, A. van der Ent. 2016. Current status and challenges in developing nickel phytomining: An agronomic perspective. Plant Soil 1–15.
  • Pobeheim, H., B. Munk, H. Lindorfer, and G.M. Guebitz. 2011. Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage. Water Research 45:781–7.
  • Prajapati, S. K., P. Kaushik, A. Malik, and V.K. Vijay. 2013. Phycoremediation-coupled production of algal biomass, harvesting and anaerobic digestion: Possibilities and challenges. Biotechnology Advances 31:1408–25.
  • Rawat, I., R. R. Kumar, T. Mutanda, and F.Bux. 2011. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy 88:3411–24.
  • Richard, T. L., and P. B. Woodbury. 1992. The impact of separation on heavy metal contaminants in municipal solid waste composts. Biomass and Bioenergy 3:195–211.
  • Sas-Nowosielska, A, R. Kucharski, E. Malkowski, M. Pogrzeba, J.M. Kuperberg, K. Krýnski. 2004. Phytoextraction crop disposal—an unsolved problem. Environmental Pollution 128:373–9.
  • Selling, R., T. Hakansson, and L. Bjornsson. 2008. Two-stage anaerobic digestion enables heavy metal removal. Water Science and Technology 57:553–8.
  • Shakeri Yekta, S. 2014. Chemical speciation of sulfur and metals in biogas reactors: Implications for cobalt and nickel bio-uptake processes.
  • Somerville, C., H. Youngs, C. Taylor, S.C. Davis, S.P. Long. 2010. Feedstocks for lignocellulosic biofuels. Science (Washington) 329:790–2.
  • Šotnar, M., J. Mareček, P. Máchal, T. Koutný, M. Geršl, E. Krčálová, M. Korenko. 2014. Biogas production of phytoremediation plants contaminated with cadmium. НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ; 53:174.
  • Sun, J., I. Pikaar, K. R. Sharma, J. Keller, Z. Yuan. 2015. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge. Water Research 71:150–9.
  • Tang, M., F. Hu, L. Wu, Y. Luo, Y. Jiang, C. Tan, N. Li, Z. Li, L. Zhang. 2009. Effects of copper-enriched composts applied to copper-deficient soil on the yield and copper and zinc uptake of wheat. International Journal of Phytoremediation 11:81–93.
  • Tangahu, B. V., S. R. Sheikh Abdullah, H. Basri, M. Idris, N. Anuar, M. Mukhlisin. 2011. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation.
  • Thewys, T., and T. Kuppens. 2008. Economics of willow pyrolysis after phytoextraction. International Journal of Phytoremediation 10:561–83.
  • Thewys, T., N. Witters, E. Meers, and J. Vangronsveld. 2010. Economic viability of phytoremediation of a cadmium contaminated agricultural area using energy maize. Part II: Economics of anaerobic digestion of metal contaminated maize in Belgium. International Journal of Phytoremediation 12:663–79.
  • Tian, Y., H. Zhang, W. Guo, et al. 2012. Assessment of the phytoremediation potential in the bioenergy crop maize (Zea mays) in soil contaminated by cadmium: Morphology, photosynthesis and accumulation. Fresenius Environmental Bulletin 21:3575–81.
  • Tian, Y.L., H.Y. Zhang, W. Guo, and X.F. Wei. 2015. Morphological responses, biomass yield, and bioenergy potential of sweet sorghum cultivated in cadmium-contaminated soil for biofuel. International Journal of Green Energy 12:577–84.
  • Tuck, G., M.J. Glendining, P. Smith, J.I House, M. Wattenbach. 2006. The potential distribution of bioenergy crops in Europe under present and future climate. Biomass and Bioenergy 30:183–97.
  • Van Ginneken, L., E. Meers, R. Guisson, A. Ruttens, K. Elst, F.M.G. Tack, J. Vangronsveld, L. Diels, W. Dejonghe. 2007. Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. Journal of Environmental Engineering and Landscape Management 15:227–36.
  • Van Slycken, S., N. Witters, E. Meers, et al. 2013. Safe use of metal-contaminated agricultural land by cultivation of energy maize (Zea mays). Environmental Pollution 178:375–80.
  • Vigil, M., M.F. Marey-Pérez, G.M. Huerta, and V.Á. Cabal. 2015. Is phytoremediation without biomass valorization sustainable?—Comparative LCA of landfilling vs. anaerobic co-digestion. Science of the Total Environment 505:844–50.
  • Vymazal, J., and L. Kropfelova. 2005. Growth of Phragmitesaustralis and Phalarisarundinacea in constructed wetlands for wastewater treatment in the Czech Republic. Ecological Engineering 25:606–21.
  • Wanqin, Z., G. Jianbin, W. Shubiao, et al. 2012. Effects of Fe2+ on the anaerobic digestion of chicken manure: A batch study. In Third international conference on digital manufacturing and automation (ICDMA), 2012, 364–8.
  • Willscher, S., D. Mirgorodsky, L. Jablonski, D. Ollivier, D. Merten, G. Büchel, J. Wittig, P. Werner. 2013. Field scale phytoremediation experiments on a heavy metal and uranium contaminated site, and further utilization of the plant residues. Hydrometallurgy 131:46–53.
  • Witters, N., R. Mendelsohn, S. Van Passel, S. Van Slycken, N. Weyens, E. Schreurs, E. Meers, F. Tack, B. Vanheusden, J. Vangronsveld. 2012a. Phytoremediation, a sustainable remediation technology? II: Economic assessment of CO2 abatement through the use of phytoremediation crops for renewable energy production. Biomass and Bioenergy 39:470–7.
  • Witters, N., R. O. Mendelsohn, S. Van Slycken, N. Weyens, E. Schreurs, E. Meers, F. Tack, R. Carleer, J. Vangronsveld. 2012b. Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: Energy production and carbon dioxide abatement. Biomass and Bioenergy 39:454–69.
  • Yan, X.-L., T.-B. Chen, X.-Y. Liao, Z.-C. Huang, J.-R. Pan, T.-D. Hu, C.-J. Nie, H. Xie. 2008. Arsenic transformation and volatilization during incineration of the hyperaccumulator Pterisvittata L. Environmental Science and Technology 42:1479–84.
  • Yang, J. 2010. Heavy metal removal and crude bio-oil upgrading from Sedum plumbizincicola harvest using hydrothermal upgrading process. Bioresource Technology 101:7653–57.
  • Yang, J.-G., J.-Y. Yang, C.-H. Peng, C.-B. Tang, K.-C. Zhou. 2009. Recovery of zinc from hyperaccumulator plants: Sedum plumbizincicola. Environmental Technology 30:693–700.
  • Yekta, S. S., A. Lindmark, U. Skyllberg, Å. Danielsson, B.H. Svensson. 2014. Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe (II), Co (II) and Ni (II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage. Journal of Hazardous Materials 269:83–8.
  • Zhang, H, Y. Tian, L. Wang, X. Mi, Y. Chai. 2013. Ecophysiological characteristics and biogas production of cadmium-contaminated crops. Bioresource Technology 146:628–36.
  • Zhang, H., Y. Tian, L. Wang, L. Zhang, L. Dai. 2016. Effect of ferrous chloride on biogas production and enzymatic activities during anaerobic fermentation of cow dung and Phragmites straw. Biodegradation 27:1–14.
  • Zhang, X., S. Zhang, X. Xu, Li, T., G. Gong, Y. Jia, Y. Li, L. Deng. 2010. Tolerance and accumulation characteristics of cadmium in Amaranthushybridus L. Journal of Hazardous Materials 180:303–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.