287
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Energy conversion from electrolyte concentration gradient using charged nano-pores

&

References

  • Abgrall, P., and N. T. Nguyen. 2008. Nanofluidic devices and their applications. Analytical Chemistry 80:2326–41.
  • Cao, L., W. Guo, W. Ma, L. Wang, F. Xia, S. Wang, Y. Wang, L. Jiang, and D. Zhu. 2011. Towards understanding the nanofluidic reverse electrodialysis system: Well matched charge selectivity and ionic composition. Energy Environment Sciences 4:2259–66.
  • Cao, L., W. Guo, Y. Wang, and L. Jiang. 2012. Concentration-gradient-dependent ion current rectification in charged conical nanopores. Langmuir 28:2194–99.
  • Chein, R., H. Chen, and C. Liao. 2009a. Analysis of electro-kinetic pumping efficiency through finite-length nano-scale surface-charged capillaries. Journal of Electroanalytical Chemistry 630:1–9.
  • Chein, R. Y., J. Liao, and H. Chen. 2009b. Electrokinetic energy conversion efficiency analysis using nanoscale finite-length surface-charged capillaries. Journal Power Sources 187:461–70.
  • Chen, C. H., and J. G. Santiago. 2002. A planar electroosmotic micro-pump. Journal Microelectromech Systems 11:672–83.
  • Cheng, L. J., and L. J. Guo. 2007. Rectified ion transport through concentration gradient in homogeneous silica nanochannels. Nano Letters 7:3165–71.
  • Daiguji, H., Y. Oka, T. Adachi, and K. Shirono. 2006. Theoretical study on the efficiency of nano-fluidic batteries. Electrochemistry Communications 8:1796–800.
  • Daiguji, H., P. Yang, and A. Majumdar. 2004. Ion transport in nano-fluidic channels. Nano Letters 4 (1):137–42.
  • Dlugolecki, P., K. Nymeijer, S. Metz, and M. Wesslinga. 2008. Current status of ion exchange membranes for power generation from salinity gradients. Journal of Membrane Science 319:214–22.
  • Eijkel, J. 2007. Liquid slip in micro- and nanofluidics: Recent research and its possible implications. Lab-On Chip 7:299–301.
  • Feinberg, B. J., G. Z. Ramon, and E. M. V. Hoek. 2013. Thermodynamic analysis of osmotic energy recovery at a reverse osmosis desalination plant. Environmental Science & Technology 47:2982–89.
  • Gillespie, D. 2012. High energy conversion efficiency in nano-fluidic nano-channels. Nano Letters 12:1410–16.
  • Guler, E., Y. Zhang, M. Saakes, and K. Nijmeijer. 2012. Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis. ChemSusChem 5 (11):2262–70.
  • Guo, W., L. Cao, J. Xia, F. Nie, W. Ma, J. Xue, Y. Song, D. Zhu, Y. Wang, and L. Jiang. 2010. Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source. Advancement Function Materials 20:1339–44.
  • Hunter, R. J. 2001. Foundations of colloid science. Oxford, U.K.: Oxford University Press.
  • IPCC Climate Change. 2013. The physical science basis, summary for policymakers. Geneva: United Nations Environment Programme (UNEP) and the World Meteorological Organization (WMO).
  • Israelachvili, J. N. 2011. Intermolecular and surface forces. 3rd ed. New York: Academic Press.
  • Jubery, T. Z., A. S. Prabhu, M. J. Kim, and P. Dutta. 2012. Modeling and simulation of nanoparticle separation through a solid state nanopore. Electrophoresis 33:325–33.
  • Kim, D. K., C. Duan, Y. F. Chen, and A. Majumdar. 2010. Power generation from concentration gradient by reverse electro dialysis in ion-selective nano-channels. Micro-fluidics and Nano-fluidics 9:1215–24.
  • Kim, J., S. J. Kim, and D. K. Kim. 2013. Energy harvesting from salinity gradient by reverse electrodialysis with anodic alumina nanopores. Energy 51:413–21.
  • Kirby, B. J., and E. F. Hasselbrink. 2004. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25:187–202.
  • Liu, S., Q. Pu, L. Gao, C. Korzeniewski, and C. Matzke. 2005. From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell. Nano Letters 5:1389–93.
  • Logan, B. E., and M. Elimelech. 2012. Membrane-based processes for sustainable power generation using water. Nature 488:313–19.
  • Lu, M. C., S. Satyanarayana, R. Karnik, A. Majumdar, and C. C. Wang. 2006. A mechanical-electrokinetic battery using a nano-porous membrane. Journal Micromechanics and Microengineering 16:667–75.
  • Mansouri, A., S. Bhattacharjee, and L. Kostiuk. 2012. High-power electrokinetic energy conversion in a glass micro-channel array. Lab Chip 12:4033–36.
  • Mao, P., and J. Han. 2005. Fabrication and characterization of 20 nm planar nano-fluidic channels by glass-glass and glass-silicon bonding. Lab Chip 5:837–44.
  • Midilli, A., I. Dincer, and M. A. Rosen. 2007. The role and future benefits of green energy. International Journal of Green Energy 4:65–87.
  • Mulder, M. 1998. Basic principles of membrane technology. 2nd ed. Dordrecht: Kluwer Academic.
  • Norman, R. S. 1974. Water salination: A source of energy. Science 186:350–52.
  • Pattle, R. E. 1954. Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature 174:660.
  • Post, J. W., H. V. M. Hamelers, and C. J. N. Buisman. 2008. Energy recovery from controlled mixing salt and fresh water with a reverse electro dialysis system. Environmental Science & Technology 42:5785–90.
  • Prabhu, A. S., T. Z. Jubery, K. Freedman, R. Mulero, P. Dutta, and M. Kim. 2010. Chemically modified solid state nanopores for high throughput nanoparticle separation. Journal Physics- Condensed Matter 22(45). Article number 454107.
  • Probstein, R. F. 1994. Physicochemical hydrodynamics: An introduction. 2nd ed. New York: Wiley.
  • Qian, S., B. Das, and X. Luo. 2007. Diffusioosmotic flows in slit nanochannels. Journal of Colloid and Interface Science 315:721–30.
  • Schoch, R. B., J. Han, and P. Renaud. 2008. Transport phenomena in nanofluidics. Reviews Modern Physical 80:839–83.
  • Siria, A., P. Poncharal, A. Biance, R. Fulcrand, X. Blase, S.T. Purcell, and L. Bocquet. 2013. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494:455–8.
  • Stein, D., M. Kruithof, and C. Dekker. 2004. Surface-charge-governed ion transport in nano-fluidic channels. Physical Review Letters 93: 035901-1–4.
  • van der Heyden, F. H. J., D. J. Bonthuis, D. Stein, C. Meyer, and C. Dekker. 2007. Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Letters 7:1022–25.
  • Veerman, J. 2009. Reverse electro dialysis: Performance of a stack with 50 cells on the mixing of sea and river water. Journal of Membrane Science 327:136–44.
  • Veerman, J., M. Saakes, S. J. Metza, and G. J. Harmsen. 2011. Reverse electrodialysis: A validated process model for design and optimization. Chemical Engineering Journal 166:256–68.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.