1,366
Views
38
CrossRef citations to date
0
Altmetric
Review Articles

A review on optimization techniques for sizing of solar-wind hybrid energy systems

, &

References

  • Abbes, D., A. Martinez, and G. Champenois. 2013. Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems. Mathematics and Computers in Simulation 98:46–62. doi:10.1016/j.matcom.2013.05.004.
  • Abouzahr, I., and R. Ramakumar. 1990. Loss of power supply probabilty of stand alone wind electric conversion system. IEEE Transaction on Energy Conversion 5 (3):445–51. doi:10.1109/60.105267.
  • Abouzahr, I., and R. Ramakumar. 1991. An approch to access the performance of ulitily-interative wind electric conversion systems. IEEE Transaction on Energy Conversion 6 (4):627–38. doi:10.1109/60.103635.
  • Agarwal, N., A. Kumar, and V. Varun. 2012. Sizing analysis and cost optimization of hybrid solar- diesel-battery based electric power generation system using simulated annealing technique. Distributed Generation & Alternative Energy Journal 27 (3):26–51. doi:10.1080/21563306.2012.10531122.
  • Ahmadi, S. and S. Abdi. 2016. Application of the Hybrid Big Bang-Big Crunch algorithm for optimal sizing of a stand-alone hybrid PV/wind/battery system. Solar Energy 134:366–74. doi:10.1016/j.solener.2016.05.019.
  • Ai, B., H. Yang, H. Shen, and X. Liao. 2003. Computer aided design of PV/wind hybrid system. Renewable Energy 28 (10):1491–512. doi:10.1016/S0960-1481(03)00011-9.
  • Aissoua, S., D. Rekiouaa, N. Mezzaia, T. Rekiouaa, and S. Bachab. 2015. Modeling and control of hybrid photovoltaic wind power system with battery storage. Energy Conversion and Management 89:615–25. doi:10.1016/j.enconman.2014.10.034.
  • Al-shamma, A. A. and K. E. Addoweesh. 2014. Techno-economic optimization of hybrid power system using genetic algorithm. International Journal of Energy Research 38 (12):1608–23. doi:10.1002/er.3191.
  • Amer, M., A. Namaane, and N. K. M’Sirdi. 2013. Optimization of Hybrid Renewable Energy Systems (HRES) using PSO for cost reduction. Energy Procedia 42:318–27. doi:10.1016/j.egypro.2013.11.032.
  • Ashenayi, K. and R. Ramakumar. 1986. Design of solar energy system for supply power to radio Communications centers. In International Telecommunications Energy Conference, 325–32. Toronto, Canada.
  • Ashok, S. 2007. Optimised model for community-based hybrid energy system. Renewable Energy 32(7):1155–64. doi:10.1016/j.renene.2006.04.008.
  • Ashourian, M. H., S. M. Cherati, A. A. MohdZin, N. Niknam, A. S. Mokhtar, and M. Anwari. 2013. Optimal green energy management for island resorts in Malaysia. Renewable Energy 51:36–45. doi:10.1016/j.renene.2012.08.056.
  • Askarzadeh, A. 2013. A discrete chaotic harmony search-based simulated annealing algorithm for optimum design of PV/wind hybrid system. Solar Energy 97( November):93–101. doi:10.1016/j.solener.2013.08.014.
  • Bagul, A. D., Z. M. Salameh, and B. S. Borowy. 1996. Sizing of a stand-alone hybrid wind-photovoltaic system using a three-event probability density approximation. Solar Energy 56 (4):323–35. doi:10.1016/0038-092X(95)00116-9.
  • Bakos, G., and M. Soursos. 2002. Techno-economic assessment of a stand-alone PV/hybrid installation for low-cost electrification of a tourist resort in Greece. Applied Energy 73 (2):183–93. doi:10.1016/S0306-2619(02)00062-4.
  • Bala, B., and S. Siddiqui. 2009. Optimal design of a PV-diesel hybrid system for electrification of an isolated island—Sandwip in Bangladesh using genetic algorithm. Energy for Sustainable Development 13(3):137–42. doi:10.1016/j.esd.2009.07.002.
  • Bansal, A. K., R. A. Gupta, and R. Kumar. 2011. Optimization of hybrid PV/wind energy system using meta particle swarm optimization. India International Conference on Power Electronics (IICPE)1–7. doi:10.1109/IICPE.2011.5728079.
  • Bansal, A. K., R. Kumar, and R. A. Gupta. 2013. Economic analysis and power management of a Small Autonomous Hybrid Power System (SAHPS) using Biogeography Based Optimization (BBO) algorithm. IEEE Transactions on Smart Grid 4 (1):638–48. doi:10.1109/TSG.2012.2236112.
  • Bazyar, R., K. Valipoor, M. R. Javadi, and M. Valizade. 2011. Optimal design and energy management of stand-alone wind/PV/diesel/battery using bacterial foraging algorithm. In Proceedings of the 8th International Energy Conference, Tehran, Iran, 1–14.
  • Bernal-agustın, J. L., R. Dufo-lopez, and D. M. Rivas-Ascaso. 2006. Design of isolated hybrid systems minimizing costs and pollutant emissions. Renewable Energy 31:2227–44. doi:10.1016/j.renene.2005.11.002.
  • Bernel-Agustin, J. L., and R. Dufo-Lopez. 2009. Multi-objective design and control of hybrid systems minimizing costs and unmet load. Electric Power System Research 79:170–80. doi:10.1016/j.epsr.2008.05.011.
  • Bhattacharjee, S. and S. Acharya. 2015. PV–wind hybrid power option for a low wind topography. Energy Conversion and Management 89:942–54. doi:10.1016/j.enconman.2014.10.065.
  • Bilal, B. O., V. Sambou, P. A. Ndiaye, C. M. F. Kébé, and M. Ndongo. 2010. Optimal design of a hybrid solar-wind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP). Renewable Energy 35(10):2388–90. doi:10.1016/j.renene.2010.03.004.
  • Bilal, B. O., V. Sambou, P. A. Ndiaye, C. M. F. Kébé, and M. Ndongo. 2013. Study of the influence of load profile variation on the optimal sizing of a standalone hybrid PV/wind/battery/diesel system. Energy Procedia 36:1265–75. doi:10.1016/j.egypro.2013.07.143.
  • Bilal, O., P. A. Ndiaye, C. M. F. Kébé, V. Sambou, and M. Ndongo. 2012. Methodology to size an optimal standalone hybrid solar-wind-battery system using genetic algorithm. International Journal of the Physical Sciences 7(18):2647–55. doi:10.5897/IJPS12.272.
  • Billinton, R., and R. Karki. 2001. Capacity expansion of small isolated power systems using PV and wind energy. IEEE Transactions on Power Systems 16(4):892–97. doi:10.1109/59.962442.
  • Borowy, B. S. and Z. M. Salameh. 1994. Optimum photovoltaic array size for a hybrid wind/PV system. IEEE Transactions on Energy Conversion 9 (3):482–88. doi:10.1109/60.326466.
  • Borowy, B. S. and Z. M. Salameh. 1996. Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system. IEEE Transactions on Energy Conversion 11(2):367–75. doi:10.1109/60.507648.
  • Bourennani, F., S. Rahnamayan, and G. F. Naterer. 2014. Optimal design methods for hybrid renewable energy systems. International Journal of Green Energy 12(2):148–59. doi:10.1080/15435075.2014.888999.
  • Buasri, P. and Z. M. Salameh. 2007. Modeling of a distributed generation system using adaptive neuro fuzzy inference approach. In IEEE Power Engineering Society General Meeting. doi:10.1109/PES.2007.386000
  • Castañeda, M., L. M. Fernández, and H. Sánchez. 2012. Sizing methods for stand-alone hybrid systems based on renewable energies and hydrogen. In 16th IEEE Mediterranean Electrotechnical Conference (MELECON), 832–35. Yasmine, Hammamet.
  • Celik, A. 2003. Techno-economic analysis of autonomous PV-wind hybrid energy systems using different sizing methods. Energy Conversion and Management 44:1951–68. doi:10.1016/S0196-8904(02)00223-6.
  • Chedid, R. and S. Rahman. 1997. Unit sizing and control of hybrid wind-solar power systems. IEEE Transactions on Energy Conversion 12(1):79–85. doi:10.1109/60.577284.
  • Chedid, R., H. Akiki, and S. Rehman. 1998. A decision support technique for the design of hybrid solar-wind power system. IEEE Transaction on Energy Conversion 13(1):76–83.
  • Chen, H. 2013. Optimum capacity determination of stand-alone hybrid generation system considering cost and reliability. Applied Energy 103:155–64.doi:10.1016/j.apenergy.2012.09.022.
  • Connolly, D., H. Lund, B. V. Mathiesen, and M. Leahy. 2010. A review of computer tools for analysing the integration of renewable energy into various energy systems. Applied Energy 87(4):1059–82. doi:10.1016/j.apenergy.2009.09.026.
  • Deshmukh, M. K., and S. S. Deshmukh. 2008. Modeling of hybrid renewable energy systems. Renewable and Sustainable Energy Reviews 12:235–49. doi:10.1016/j.rser.2006.07.011.
  • Diaf, S., D. Diaf, M. Belhamel, M. Haddadi, and A. Louche. 2007. A methodology for optimal sizing of autonomous hybrid PV /wind system. Energy Policy 35:5708–18. doi:10.1016/j.enpol.2007.06.020.
  • Dorigo, M., V. Maniezzo, and A. Colorni. 1996. Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) 26(1):29–41. doi:10.1109/3477.484436.
  • Dorigo, M., M. Birattari, and T. Stutzle. 2006. Ant colony optimization. IEEE Computational Intelligence Magazine 1(4):28–39. doi:10.1109/MCI.2006.329691.
  • Dorji, T., T. Urmee, and P. Jennings. 2012. Options for off-grid electrification in the Kingdom of Bhutan. Renewable Energy 45:51–58. doi:10.1016/j.renene.2012.02.012.
  • Dufo-lópez, R. and J. L. Bernal-Agustín. 2012. New methodology for the generation of hourly wind speed data applied to the optimization of stand-alone systems. Energy Procedia 14(2012):1973–78. doi:10.1016/j.egypro.2011.12.887.
  • Dufo-Lopez, R., J. L. Bernal-Agustin, and F. Mendoza. 2009. Design and economical analysis of hybrid PV-wind systems connected to the grid for the intermittent production of hydrogen. Energy Policy 37:3082–95.
  • Dufo-lópez, R., J. L. Bernal-agustín, J. M. Yusta-loyo, J. A. Domínguez-navarro, I. J. Ramírez-rosado, J. Lujano, and I. Aso. 2011. Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV--wind--diesel systems with batteries storage. Applied Energy 88:4033–41.doi:10.1016/j.apenergy.2011.04.019.
  • Dursun, B., C. Gokcol, I. Umut, E. Ucar, and S. Kocabey. 2013. Techno-economic evaluation of a hybrid PV-wind power generation system. International Journal of Green Energy 10(2):117–36. doi:10.1080/15435075.2011.641192.
  • Eberhart, C., and Y. Shi 2000. Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings of the 2000 Congress on Evolutionary Computation, 84–88.
  • Eke, R., O. Kara, and K. Ulgen. 2005. Optimization of a wind /PV hybrid power generation system. International Journal of Green Energy 2(1):57–63. doi:10.1081/GE-200051304.
  • Ekren, B. Y. and O. Ekren. 2009. Simulation based size optimization of a PV /wind hybrid energy conversion system with battery storage under various load and auxiliary energy conditions. Applied Energy 86(9):1387–94. doi:10.1016/j.apenergy.2008.12.015.
  • Ekren, O., and B. Y. Ekren. 2008. Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology. Applied Energy 85:1086–101. doi:10.1016/j.apenergy.2008.02.016.
  • Ekren, O. and B. Y. Ekren. 2010. Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing. Applied Energy 87(2):592–98. doi:10.1016/j.apenergy.2009.05.022.
  • Elhadidy, M. and S. Shaahid. 2000. Parametric study of hybrid (wind + solar + diesel) power generating systems. International Journal of Renewable Energy 21:129–39. doi:10.1016/S0960-1481(00)00040-9.
  • Elhadidy, M. A., and S. M. Shaahid. 1998. Feasibility of hybrid (wind+solar) power systems for Dhahran, Saudi Arabia. In World Renewable Energy Congress V, 20–25. Florence, Italy.
  • Elhadidy, M. A., and S. M. Shaahid. 2003. Promoting applications of hybrid (wind + photovoltaic +diesel+ battery) power systems in hot regions. Renewable Energy 29:517–28. doi:10.1016/j.renene.2003.08.001.
  • Elhadidy, M. A., and S. M. Shaahid. 2004. Role of hybrid (wind + diesel) power systems in meeting commercial loads. Renewable Energy 29:109–18. doi:10.1016/S0960-1481(03)00067-3.
  • Erdinc, O. and M. Uzunoglu. 2012. Optimum design of hybrid renewable energy systems: Overview of different approaches. Renewable and Sustainable Energy Reviews 16(3):1412–25. doi:10.1016/j.rser.2011.11.011.
  • Fadaee, M. and M. A. M. Radzi. 2012. Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review. Renewable and Sustainable Energy Reviews 16(5):3364–69. doi:10.1016/j.rser.2012.02.071.
  • Ferrer-Marti, L., B. Domenech, A. Garcia-Villoria, and R. Pastor. 2013. A MILP model to design hybrid wind--photovoltaic isolated rural electrification projects in developing countries. European Journal of Operational Research 226:293–300. doi:10.1016/j.ejor.2012.11.018.
  • Gavanidou, E. S. and A. G. Bakirtzis. 1992. Design of a standalone system with renewable energy sources using trade off methods. IEEE Transactions on Energy Conversion 7(1):42–48. doi:10.1109/60.124540.
  • Geem, Z. W. 2012. Size optimization for a hybrid photovoltaic--wind energy system. International Journal of Electrical Power & Energy Systems 42(1):448–51. doi:10.1016/j.ijepes.2012.04.051.
  • George, M. and R. Banerjee. 2011. A methodology for analysis of impacts of grid integration of renewable energy. Energy Policy 39(3):1265–76. doi:10.1016/j.enpol.2010.11.054.
  • Gharavi, H., M. Ardehali, and S. Ghanbari-Tichi. 2015. Imperial competitive algorithm optimization of fuzzy multi-objective design of a hybrid green power system with considerations for economics, reliability, and environmental emissions. Renewable Energy 78:427–37. doi:10.1016/j.renene.2015.01.029.
  • Gomma, S., A. K. A. Seoud, and H. N. Kharalla. 1995. Design and analysis of photovoltaic and wind energy hybrid systems in Alexandria, Egypt. Renewable Energy 6(5–6):643–47. doi:10.1016/0960-1481(95)00044-K.
  • Govardhan, M. D. and R. Roy. 2012. Artificial Bee Colony based optimal management of microgrid. In 11th International Conference on Environment and Electrical Engineering (EEEIC), Venice, Italy, 12–17.
  • Gupta, A., R. P. Saini, and M. P. Sharma. 2010. Steady-state modelling of hybrid energy system for off grid electrification of cluster of villages. Renewable Energy 35(2):520–35. doi:10.1016/j.renene.2009.06.014.
  • Gupta, R., R. Kumar, and A. Bansal. 2009. A new methodology for optimizaing the size of hybrid PV/wind systems using genetic algorithms. In Proceding of national conference on recent advances in electrical and electronics (RAEEE-09), Hamirpur, India, 133–39.
  • Haidar, A. M. A., P. N. John, and M. Shawal. 2011. Optimal configuration assessment of renewable energy in Malaysia. Renewable Energy 36 (2):881–88. doi:10.1016/j.renene.2010.07.024.
  • Hakimi, S. M. and S. M. Moghaddas-Tafreshi. 2009. Optimal sizing of a stand-alone hybrid power system via particle swarm optimization for Kahnouj area in south-east of Iran. Renewable Energy 34(7):1855–62. doi:10.1016/j.renene.2008.11.022.
  • Hassan, A., M. Saadawi, M. Kandil, and M. Saeed. 2015. Modified particle swarm optimisation technique for optimal design of small renewable energy system supplying a specific load at Mansoura University. IET Renewable Power Generation 9:474–83. doi:10.1049/iet-rpg.2014.0170.
  • Hassiba, Z., C. Larbes, and M. Ali. 2013. Optimal operational strategy of hybrid renewable energy system for rural electrification of a remote Algeria. Energy Procedia 36:1060–69. doi:10.1016/j.egypro.2013.07.121.
  • Holland, J. 1975. Adaptation in natural and artificial systems. Cambridge, MA: MIT press.
  • Hong, C. and C. Chen. 2014. Intelligent control of a grid-connected wind-photovoltaic hybrid power systems. International Journal of Electrical Power & Energy Systems 55:554–61. doi:10.1016/j.ijepes.2013.10.024.
  • Hongxing, Y., Z. Wei, and L. Chengzhi. 2009. Optimal design and techno-economic analysis of a hybrid solar-wind power generation system. Applied Energy 86:163–69. doi:10.1016/j.apenergy.2008.03.008.
  • Hu, Y. and P. Solana. 2013. Optimization of a hybrid diesel-wind generation plant with operational options. Renewable Energy 51:364–72. doi:10.1016/j.renene.2012.10.005.
  • Javadi, M. R., A. Jalilvabd, R. Noroozaian, and M. Valizadeh. 2011. Optimal design and economic assessment of battery based stand alone wind/PV generating system using ABC. In 3rd Conference on Thermal Power Plants (CTPP), 1–7.
  • Jidong Wang, F. Y. 2013. Optimal capacity allocation of standalone wind/solar/battery hybrid power system based on improved particle swarm optimisation algorithm. IET Renewable Power Generation 7(5):443–48. doi:10.1049/iet-rpg.2012.0329.
  • Kaabeche, A., M. Belhamel, and R. Ibtiouen. 2011. Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system. Energy 36(2):1214–22. doi:10.1016/j.energy.2010.11.024.
  • Kalogirou, S. A. 2004. Optimization of solar systems using artificial neural-networks and genetic algorithms. Applied Energy 77:383–405. doi:10.1016/S0306-2619(03)00153-3.
  • Karaboga, D. and B. Basturk. 2007. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization 39(3):459–71. doi:10.1007/s10898-007-9149-x.
  • Karaki, S. H., R. B. Chedid, and R. Ramadan. 1999. Probabilistic performance assessment of autonomous solar-wind energy conversion systems. IEEE Transactions on Energy Conversion 14(3):766–72. doi:10.1109/60.790949.
  • Katsigiannis, Y., P. Georgilakis, and E. Karapidakis. 2010. Multiobjective genetic algorithm solution to the optimum economic and environmental performance problem of small autonomous hybrid power systems with renewables. IET Renewable Power Generation 4(5):404–19. doi:10.1049/iet-rpg.2009.0076.
  • Katsigiannis, Y. A., P. S. Georgilakis, and E. S. Karapidakis. 2012. Hybrid simulated annealing–tabu search method for optimal sizing of autonomous power systems with renewables. IEEE Transactions on Sustainable Energy 3(3):330–38. doi:10.1109/TSTE.2012.2184840.
  • Kaviani, A., G. Riahy, and S. Kouhsari. 2008. Optimal design of a reliable hydrogen-based stand-alone wind/PV generation system. In 11th International Conference on Optimization of Electrical and Electronic Equipment, 413–18. Brasov.
  • Kaviani, A., G. Riahy, and S. Kouhsari. 2009. Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages. Renewable Energy 34(11):2380–90. doi:10.1016/j.renene.2009.03.020.
  • Kellogg, W., M. H. Nehrir, G. Venkataramanan, and V. Gerez. 1996. Optimal unit sizing for a hybrid wind/photovoltaic generating system. Electric Power System Research 39:35–8.
  • Kellogg, W. D., M. H. Nehrir, G. Venkataramanan, and V. Gerez. 1998. Generation unit sizing and cost analysis for stand-alone wind, photovoltaic, and hybrid wind/PV systems. IEEE Transactions on Energy Conversion 13(1):70–75. doi:10.1109/60.658206.
  • Kennedy, J., and R. Eberhart. 1995. Particle swarm optimization. In IEEE International Conference on Neural Networks, vol. 4, 1942–48. Perth, Australia.
  • Khan, M. J., and M. T. Iqbal. 2005. Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland. Renewable Energy 30(6):835–54. doi:10.1016/j.renene.2004.09.001.
  • Khare, A. and S. Rangnekar. 2013. A review of particle swarm optimization and its applications in Solar Photovoltaic system. Applied Soft Computing Journal 13(5):2997–3006. doi:10.1016/j.asoc.2012.11.033.
  • Khare, V., S. Nema, and P. Baredar. 2012. Application of game theory in solar wind hybrid energy system. International Journal of Electrical, Electronics Engineering Research 2:25–32.
  • Khare, V., S. Nema, and P. Baredar. 2015. Optimisation of the hybrid renewable energy system by HOMER, PSO and CPSO for the study area. International Journal of Sustainable Energy June:1–18. doi:10.1080/14786451.2015.1017500.
  • Khatib, T., A. Mohamed, and K. Sopian. 2012. Optimization of a PV /wind micro-grid for rural housing electrification using a hybrid iterative/genetic algorithm: Case study of Kuala Terengganu, Malaysia. Energy and Buildings 47:321–31. doi:10.1016/j.enbuild.2011.12.006.
  • Kirkpatrick, S., C. Gelatt, and M. Ecchi. 1983. Optimization by simulated annealing. Science 220:671–80. doi:10.1126/science.220.4598.671.
  • Koutroulis, E., D. Kolokotsa, A. Potirakis, and K. Kalaitzakis. 2006. Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. Solar Energy 80 (9):1072–88. doi:10.1016/j.solener.2005.11.002.
  • Kumar, R., R. A. Gupta, and A. K. Bansal. 2013. Economic analysis and power management of a stand-alone wind/photovoltaic hybrid energy system using biogeography based optimization algorithm. Swarm and Evolutionary Computation 8:33–43. doi:10.1016/j.swevo.2012.08.002.
  • Lagorse, J., D. Paire, and A. Miraoui. 2009. Sizing optimization of a stand-alone street lighting system powered by a hybrid system using fuel cell, PV and battery. Renewable Energy 34(3):683–91. doi:10.1016/j.renene.2008.05.030.
  • Liqun, L. and L. Chunxia. 2013. Feasibility analyses of hybrid wind-PV-battery power system in. PrzegladElektrotechnicczny 1:239–42.
  • Liu, X., P. Wang, and P. C. Loh. 2011. A hybrid AC/DC microgrid and its coordination control. IEEE Transactions on Smart Grid 2(2):278–86. doi:10.1109/TSG.2011.2116162.
  • Maleki, A., M. Ameri, and F. Keynia. 2015. Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system. Renewable Energy 80:552–63. doi:10.1016/j.renene.2015.02.045.
  • Maleki, A. and A. Askarzadeh. 2014. Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: A case study of Rafsanjan, Iran. Sustainable Energy Technologies and Assessments 7:147–53. doi:10.1016/j.seta.2014.04.005.
  • Maleki, A., M. G. Khajeh, and M. Ameri. 2016. Optimal sizing of a grid independent hybrid renewable energy system incorporating resource uncertainty, and load uncertainty. International Journal of Electrical Power & Energy Systems 83:514–24. doi:10.1016/j.ijepes.2016.04.008.
  • Maleki, A. and F. Pourfayaz. 2015. Optimal sizing of autonomous hybrid photovoltaic/wind/battery power system with LPSP technology by using evolutionary algorithms. Solar Energy 115:471–83. doi:10.1016/j.solener.2015.03.004.
  • Malheiro, A., P. M. Castro, R. M. Lima, and A. Estanqueiro. 2015. Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems. Renewable Energy 83:646–57. doi:10.1016/j.renene.2015.04.066.
  • Mamaghani, A. H., S. A. A. Escandon, B. Najafi, A. Shirazi, and F. Rinaldi. 2016. Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia. Renewable Energy 97:293–305.
  • Markvart, T. 1996. Sizing of hybrid photovoltaic-wind energy systems. Solar Energy 57(4):277–81. doi:10.1016/S0038-092X(96)00106-5.
  • Mellit, A., S. A. Kalogirou, and M. Drif. 2010. Application of neural networks and genetic algorithms for sizing of photovoltaic systems. Renewable Energy 35(12):2881–93. doi:10.1016/j.renene.2010.04.017.
  • Merei, G. and D. U. S. Cornelius Berger. 2013. Optimization of an off-grid hybrid PV–Wind–Diesel system with different battery technologies using genetic algorithm. Solar Energy 97 (November):460–73. doi:10.1016/j.solener.2013.08.016.
  • Mills, A. and S. Al-Hallaj. 2004. Simulation of hydrogen-based hybrid systems using Hybrid2. International Journal of Hydrogen Energy 29(10):991–99. doi:10.1016/j.ijhydene.2004.01.004.
  • Mohamed, A., M. Elarini, and A. Othman. 2014. A new technique based on Artificial Bee Colony Algorithm for optimal sizing of stand-alone photovoltaic system. Journal of Advanced Research 5(3):397–408. doi:10.1016/j.jare.2013.06.010.
  • Muselli, M., G. Notton, and A. Louche. 1999. Design of hybrid photovoltaic power generator with optimization of energy management. Solar Energy 65 (3):143–57. doi:10.1016/S0038-092X(98)00139-X.
  • Nafeh, A. E.-S. 2011. Optimal economical sizing of a PV-wind hybrid energy system using genetic algorithm. International Journal of Green Energy 8 (1):25–43. doi:10.1080/15435075.2010.529407.
  • Nandi, S. K., and H. R. Ghosh. 2009. A wind – PV-battery hybrid power system at Sitakunda in Bangladesh. Energy Policy37 (9):3659–64. doi:10.1016/j.enpol.2009.04.039.
  • Nandi, S. K., and H. R. Ghosh. 2010. Techno-economical analysis of off-grid hybrid systems at Kutubdia Island, Bangladesh. Energy Policy38 (2):976–80. doi:10.1016/j.enpol.2009.10.049.
  • Nehrir, M. H., C. Wang, K. Strunz, H. Aki, R. Ramakumar, J. Bing, … Z. Salameh. 2011. A review of hybrid renewable /alternative energy systems for electric power generation. IEEE Transaction on Sustainable Energy 2 (4):392–403. doi:10.1109/TSTE.2011.2157540.
  • Oliva, R. B. 2008. Simulation and measurement procedures for effective isolated wind and hybrid system development in south Patagonia. Energy for Sustainable Development 12 (2):17–26. doi:10.1016/S0973-0826(08)60425-1.
  • Paliwal, P., N. P. Patidar, and R. K. Nema. 2014. Determination of reliability constrained optimal resource mix for an autonomous hybrid power system using Particle Swarm Optimization. Renewable Energy 63:194–204. doi:10.1016/j.renene.2013.09.003.
  • Panahandeh, B., J. Bard, A. Outzourhit, and D. Zejli. 2011. Simulation of PV–Wind-hybrid systems combined with hydrogen storage for rural electrification. International Journal of Hydrogen Energy 36(6):4185–97. doi:10.1016/j.ijhydene.2010.07.151.
  • Panayiotou, G., S. Kalogirou, and S. Tassou. 2012. Design and simulation of a PV and a PV–Wind standalone energy system to power a household application. Renewable Energy 37(1):355–63. doi:10.1016/j.renene.2011.06.038.
  • Patil, A. B. K., R. P. Saini, and M. P. Sharma. 2011. Sizing of integrated renewable energy system based on load profiles and reliability index for the state of Uttarakhand in India. Renewable Energy 36(11):2809–21. doi:10.1016/j.renene.2011.04.022.
  • Perera, A. T. D., R. A. Attalage, K. K. C. K. Perera, and V. P. C. Dassanayake. 2013. A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems. Applied Energy 107:412–25.doi:10.1016/j.apenergy.2013.02.049.
  • Phuangpornpitak, N. and S. Kumar. 2011. User acceptance of diesel /PV hybrid system in an island community. Renewable Energy 36 (1):125–31. doi:10.1016/j.renene.2010.06.007.
  • Phuangpornpitak, N., S. Tia, W. Prommee, and W. Phaungpornpitak (2010). A study of particle swarm technique for renewable energy power systems. In Proceedings of the International Conference on Energy and Sustainable Development: Issues and Strategies,1–6. Chiang Mai.
  • Poullikkas, A., G. Kourtis, and I. Hadjipaschalis. 2011. A hybrid model for the optimum integration of renewable technologies in power generation systems. Energy Policy 39 (2):926–35. doi:10.1016/j.enpol.2010.11.018.
  • Ramakumar, R., I. Abouzahr, K. Krishnan, and K. Ashenayi 1995. Design scenarios for integrated renewable energy systems, IEEE Transactions on Energy Conversion 10(4):736–45
  • Rajkumar, R. K., V. K. Ramachandaramurthy, B. L. Yong, and D. B. Chia. 2011. Techno-economical optimization of hybrid pv/wind/battery system using Neuro-Fuzzy. Energy 36(8):5148–53. doi:10.1016/j.energy.2011.06.017.
  • Ramakumar, R., P. S. Shetty, and K. Ashenayi. 1986. A linear programming approach to the design of integrated renewable energy systems for developing countries. IEEE Transactions on Energy Conversion EC-1(4):18–24. doi:10.1109/TEC.1986.4765768.
  • Rehman, S., M. M. Alam, J. P. Meyer, and L. M. Al-hadhrami. 2012. Feasibility study of a wind-PV-diesel hybrid power system for a village. Renewable Energy 38:258–68. doi:10.1016/j.renene.2011.06.028.
  • Rehman, S. and L. M. Al-Hadhrami. 2010. Study of a solar PV–diesel–battery hybrid power system for a remotely located population near Rafha, Saudi Arabia. Energy 35(12):4986–95. doi:10.1016/j.energy.2010.08.025.
  • Ribeiro, L. A. D. S., O. R. Saavedra, S. L. De Lima, and J. G. De Matos. 2011. Isolated micro-Grids with renewable hybrid generation : The case of Lençóis Island. IEEE Transaction on Sustainable Energy (1):1–11.
  • Sanajaoba, S. and E. Fernandez. 2016. Maiden application of Cuckoo Search algorithm for optimal sizing of a remote hybrid renewable energy System. Renewable Energy 96:1–10. doi:10.1016/j.renene.2016.04.069.
  • Seeling-Hochmuth, G. C. 1997. A combined optimization concept for design and operational strategy of hybrid PV energy systems. Solar Energy 61(2):77–87. doi:10.1016/S0038-092X(97)00028-5.
  • Sen, R. and S. C. Bhattacharyya. 2014. Off-grid electricity generation with renewable energy technologies in India: An application of HOMER. Renewable Energy 62:388–98. doi:10.1016/j.renene.2013.07.028.
  • Senjyu, T., D. Hayashi, A. Yona, N. Urasaki, and T. Funabashi. 2007. Optimal configuration of power generating systems in isolated island with renewable energy. Renewable Energy 32 (11):1917–33. doi:10.1016/j.renene.2006.09.003.
  • Senjyu, T., T. Nakaji, K. Uezato, and T. Funabashi. 2005. A hybrid power system using alternative energy facilities in isolated island. IEEE Transactions on Energy Conversion 20 (2):406–14. doi:10.1109/TEC.2004.837275.
  • Shaahid, S. M., and M. A. Elhadidy. 2004. Prospects of autonomous /stand-alone hybrid (photo-voltaic + diesel + battery) power systems in commercial applications in hot regions. Renewable Energy 29:165–77. doi:10.1016/S0960-1481(03)00194-0.
  • Sharafi, M. and T. Y. ELMekkawy. 2014. Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach. Renewable Energy 68:67–79. doi:10.1016/j.renene.2014.01.011.
  • Shengtie, W. and Q. Zhiyuan (2009). Coordination control of energy management for stand-alone wind /PV hybrid systems.In 4th IEEE Conference on Industrial Eectronics and Applications, 3240–44.doi:10.1109/ICIEA.2009.5138800
  • Shi, J., Z. Zhong, X. Zhu, and G. Cao. 2007. Robust design and optimization for autonomous PV-wind hybrid power systems. Journal of Zhejiang University Science A 9(3):401–09. doi:10.1631/jzus.A071317.
  • Siddaiah, R. and R. P. Saini. 2016. A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications. Renewable and Sustainable Energy Reviews 58:376–96. doi:10.1016/j.rser.2015.12.281.
  • Simon, D. 2008. Biogeography-Based Optimization. IEEE Transactions on Evolutionary Computation 12(6):702–13. doi:10.1109/TEVC.2008.919004.
  • Singh, S. and S. C. Kaushik. 2016. Optimal sizing of grid integrated hybrid PV-biomass energy system using artificial bee colony algorithm. IET Renewable Power Generation 10(5):642–50. doi:10.1049/iet-rpg.2015.0298.
  • Sinha, S. and S. S. Chandel. 2014. Review of software tools for hybrid renewable energy systems. Renewable and Sustainable Energy Reviews 32:192–205. doi:10.1016/j.rser.2014.01.035.
  • Swift, A. H. P., and M. P. Holder (1988). Design of hybrid energy systems. In 7th ASME Wind Symposium, 7411, New York.
  • Tina, G., S. Gaglianom, and S. Raiti. 2006. Hybrid solar/wind power system probabilistic modelling for long-term performance assessment. Solar Energy 80:578–88. doi:10.1016/j.solener.2005.03.013.
  • Trazouei, S. L., F. L. Tarazouei, and M. Ghiamy. 2013. Optimal design of a hybrid solar -wind-diesel power system for rural electrification using imperialist competitive algorithm. International Journal of Renewable Enegrgy Research 3(2):403–11.
  • Tudu, B., S. Majumder, K. K. Mandal, and N. Chakraborty. 2011. Comparative performance study of genetic algorithm and particle swarm optimization applied on off-grid renewable hybrid energy system. Swarm, Evolutionary, and Memetic Computing 7076:151–58.
  • Ulgen, K., and A. Hepbasli. 2003. A study on evaluating the power generation of solar-wind hybrid systems in Izmir, Turkey. Energy Sources 25(3):241–52. doi:10.1080/00908310390142299.
  • Valenciaga, F. and Paul F. Puleston. 2005. Supervisor control for a stand-alone hybrid generation system using wind and photovoltaic energy. IEEE Transactions on Energy Conversion 20(2):398–405.
  • Valenciaga, F., P. F. Puleston, and P. E. Battaiotto. 2003. Power control of a solar /wind generation system without wind measurement: Passivity /sliding mode approach. IEEE Transactions on Energy Conversion18(4):501–07. doi:10.1109/TEC.2003.816602.
  • Wang, C. and M. H. Nehrir. 2008. Power management of a stand-alone wind/photovoltaic/fuel cell energy system. IEEE Transactions on Energy Conversion 23(3):957–67. doi:10.1109/TEC.2007.914200.
  • Wang, L., and C. Singh. 2009. Multicriteria design of hybrid power generation systems based on a modified particle swarm optimization algorithm. IEEE Transactions on Energy Conversion 24(1):163–72. doi:10.1109/TEC.2008.2005280.
  • Wu, K., H. Zhou, S. An, and T. Huang.2015. Optimal coordinate operation control for wind–photovoltaic–battery storage power-generation units. Energy Conversion and Management 90:466–75. doi:10.1016/j.enconman.2014.11.038.
  • Xu, D., L. Kang, L. Chang, and B. Cao (2005). Optimal sizing of standalone hybrid wind/PV power systems using genetic algorithms. In Canadian Conference on Electrical and Computer Engineering, Saskatoon, Canada, 1722–25.
  • Xu, D., K. Longyun, and B. Cao. 2006. Graph-based ant system for optimal sizing of standalone hybrid wind/pv power systems. Computational Intelligence 4114:1136–46.
  • Yang, H., L. Lu, and W. Zhou. 2007. A novel optimization sizing model for hybrid solar-wind power generation system. Solar Energy 81:76–84. doi:10.1016/j.solener.2006.06.010.
  • Yang, H., W. Zhou, L. Lu, and Z. Fang. 2008. Optimal sizing method for stand-alone hybrid solar-wind system with LPSP technology by using genetic algorithm. Solar Energy 82:354–67. doi:10.1016/j.solener.2007.08.005.
  • Yang, H. X., L. Burnett, and J. Lu. 2003. Weather data and probability analysis of hybrid photovoltaic–wind power generation systems in Hong Kong. Renewable Energy 28:1813–24. doi:10.1016/S0960-1481(03)00015-6.
  • Zhao, B., X. Zhang, P. Li, K. Wang, M. Xue, and C. Wang. 2014. Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island. Applied Energy 113:1656–66.doi:10.1016/j.apenergy.2013.09.015.
  • Zhao, Y. S., J. Zhan, Y. Zhang, D. P. Wang, and B. G. Zou (2009). The optimal capacity configuration of an independent wind/pv hybrid power supply system based on improved PSO algorithm. In 8th International Conference on Advances in Power System Control, Operation and Management (APSCOM 2009, Jinan,China).
  • Zheng, Y., S. Chen, Y. Lin, and W. Wang. 2013. Bio-inspired optimization of sustainable energy systems: A review. Mathematical Problems in Engineering 1–12.doi:10.1155/2013/354523Review.
  • Zhou, W., C. Lou, Z. Li, L. Lu, and H. Yang. 2010. Current status of research on optimum sizing of stand-alone hybrid solar – wind power generation systems. Applied Energy 87 (2):380–89. doi:10.1016/j.apenergy.2009.08.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.