245
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Hydrothermal liquefaction phase behavior of microalgae & model compounds in fused silica capillary reactor

, , , , , , & show all

References

  • Ahmad, A. L., N. H. Mat, C. J. C. Derek, and J. K. Lim. 2011. Microalgae as a sustainable energy source for biodiesel production: A review. Renewable & Sustainable Energy Reviews 15:584–93. doi:10.1016/j.rser.2010.09.018.
  • Alba, L. G., C. Torri, C. Samorì, J. vanderSpek, D. Fabbri, S. R. A. Kersten, and D. W. F. Brilman. 2012. Hydrothermal treatment (HTT) of microalgae: Evaluation of the process as conversion method in an algae biorefinery concept. Energy & Fuels 26:642–57. doi:10.1021/ef201415s.
  • Alonso, D. M., S. G. Wettstein, and J. A. Dumesic. 2012. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chemical Society Reviews 41:8075–98. doi:10.1039/c2cs35188a.
  • Biller, P., R. Riley, and A. B. Ross. 2011. Catalytic hydrothermal processing of microalgae: Decomposition and upgrading of lipids. Bioresource Technology 102:4841–4488. doi:10.1016/j.biortech.2010.12.113.
  • Brennan, L., and P. Owende. 2010. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable & Sustainable Energy Reviews 14:557–77. doi:10.1016/j.rser.2009.10.009.
  • Chen, C. Y., X. Q. Zhao, H. W. Yen, S. H. Hod, C. L. Chengd, D. J. Leee, F. W. Baib, and J. S. Chang. 2013. Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal 78:1–10. doi:10.1016/j.bej.2013.03.006.
  • Chen, Y., Y. L. Wu, P. L. Zhang, D. R. Hua, M. D. Yang, C. Li, Z. Chen, and J. Liu. 2012. Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol-water. Bioresource Technology 124:190–98. doi:10.1016/j.biortech.2012.08.013.
  • Chen, Y., Y. L. Wu, P. L. Zhang, D. R. Hua, M. D. Yang, C. Li, Z. Chen, and J. Liu. 2015. Thermochemical conversion of low-lipid microalgae for the production of liquid fuels: Challenges and opportunities. RSC Advances 5:18673–701. doi:10.1039/C4RA13359E.
  • Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances 25:294–306. doi:10.1016/j.biotechadv.2007.02.001.
  • Du, Z. Y., Y. C. Li, X. Q. Wang, Y. Q. Wan, Q. Chen, C. G. Wang, X. Y. Lin, Y. H. Liu, P. Chen, and R. Ruan. 2011. Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresource Technology 102:4890–96. doi:10.1016/j.biortech.2011.01.055.
  • Duffy, J. E., E. A. Canuel, W. Adey, and J. P. Swaddle. 2009. Biofuels: Algae. Science 326:5958.1345–a.
  • Gai, C., Y. Zhang, W.-T. Chen, P. Zhang, and Y. Dong. 2015. An investigation of reaction pathways of hydrothermal liquefaction using Chlorella pyrenoidosa and Spirulina platensis. Energy Conversion and Management 96:330–39. doi:10.1016/j.enconman.2015.02.056.
  • Gebreslassie, B. H., R. Waymire, and F. Q. You. 2013. Sustainable design and synthesis of algae-based biorefinery for simultaneous hydrocarbon biofuel production and carbon sequestration. Aiche Journal 59:1599–621. doi:10.1002/aic.14075.
  • Gouveia, L., and A. C. Oliveira. 2009. Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology & Biotechnology 36:269–74. doi:10.1007/s10295-008-0495-6.
  • He, W. J., Z. F. Jin, J. L. Wang, and Z. Y. Pan. 2013. Decomposition of 1,1,1-Trichloroethane in hot compressed water in anti-corrosive fused silica capillary reactor and raman spectroscopic measurement of CO2 product. Chemical Engineering Science 94:185–91. doi:10.1016/j.ces.2013.02.031.
  • Jin, J. J., J. L. Wang, Y. Shen, C. M. Lin, Z. Y. Pan, and I. M. Chou. 2014. Visual and Raman spectroscopic observations of hot compressed water oxidation of guaiacol in fused silica capillary reactors. Journal of Supercritical Fluids 95:546–52. doi:10.1016/j.supflu.2014.09.002.
  • Lee, J. Y., C. Yoo, S. Y. Jun, and H. M. Oh. 2010. Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology 101:S75–S77. doi:10.1016/j.biortech.2009.03.058.
  • Leow, S., J. R. Witter, D. R. Vardon, B. K. Sharma, J. S. Guest, and T. J. Strathmann. 2015. Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition. Green Chemistry 17:3584–99. doi:10.1039/C5GC00574D.
  • Li, T. T., Y. B. Zheng, L. Yu, and S. L. Chen. 2013. High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresource Technology 131:60–67. doi:10.1016/j.biortech.2012.11.121.
  • Liu, H. C., and Z. Y. Pan. 2012. Visual observations and raman spectroscopic studies of supercritical water oxidation of chlorobenzene in an anti-corrosive fused-silica capillary reactor. Environmental Science & Technology 46:3384–89. doi:10.1021/es204262d.
  • Pan, Z. Y., I. M. Chou, and R. C. Burruss. 2009. Hydrolysis of polycarbonate in sub-critical water in fused silica capillary reactor with in situ Raman spectroscopy. Green Chemistry 11:1105.
  • Pan, Z. Y., Z. C. Hu, Y. H. Shi, Y. Shen, J. L. Wang, and I. M. Chou. 2014. Depolymerization of polycarbonate with catalyst in hot compressed water in fused silica capillary and autoclave reactors. RSC Advances 4:19992–98. doi:10.1039/C4RA00680A.
  • Pan, Z. Y., Y. P. Ma, and I. M. Chou. 2013. Solubility of 2,4‐dichlorotoluene in water determined in fused silica capillary reactor by in‐situ raman spectroscopy. Aiche Journal 59:2721–25. doi:10.1002/aic.14163.
  • Prapaiwatcharapan, K., S. Sunphorka, P. Kuchonthara, K. Kangvansaichol, N. Hinchiranan. 2015. Single‐and two‐step hydrothermal liquefaction of microalgae in a semi‐continuous reactor: Effect of the operating parameters. Bioresource Technology 191:426–32. doi:10.1016/j.biortech.2015.04.027.
  • Pu, Y. Q., S. L. Cao, and A. J. Ragauskas. 2011. Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy & Environmental Science 4:3154–66. doi:10.1039/c1ee01201k.
  • Raheem, A., W. A. K. G. Wan Azlina, Y. H. Taufiq Yap, M. K. Danquah, and R. Harun. 2015. Thermochemical conversion of microalgal biomass for biofuel production. Renewable and Sustainable Energy Reviews 49:990–99. doi:10.1016/j.rser.2015.04.186.
  • Ramirez, J., R. Brown, and T. Rainey. 2015. A review of hydrothermal liquefaction bio-crude properties and prospects for upgrading to transportation fuels. Energies 8:6765–94. doi:10.3390/en8076765.
  • Roberts, G. W., M. O. P. Fortier, B. S. M. Sturm, and S. M. S. Williams. 2013. Promising pathway for algal biofuels through wastewater cultivation and hydrothermal conversion. Energy & Fuels 27:857–67. doi:10.1021/ef3020603.
  • Schenk, P. M., S. R. T. Hall, E. Stephens, U. C. Marx, J. H. Mussgnug, C. Posten, O. Kruse, and B. Hankamer. 2008. Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Research 1:20–43. doi:10.1007/s12155-008-9008-8.
  • Shen, Y., H.Y. Wu, Y. Li, Z.Y. Pan. 2015. Coliquefaction of Coal and Polystyrene in Supercritical Water. International Journal of Green Energy 13:305–08. doi:10.1080/15435075.2014.961463.
  • Torri, C., L. Garcia Alba, C. Samorì, D. Fabbri, and D. W. Brilman. 2012. Hydrothermal treatment (HTT) of microalgae: Detailed molecular characterization of HTT oil in view of HTT mechanism elucidation. Energy & Fuels 26:658–71. doi:10.1021/ef201417e.
  • Wijffels, R. H., and M. J. Barbosa. 2010. An outlook on microalgal biofuels. Science 239:796–99. doi:10.1126/science.1189003.
  • Williams, P. J. B. 2007. Biofuel: Microalgae cut the social and ecological costs. Nature 450:478.
  • Xu, D., and P. E. Savage. 2015. Effect of reaction time and algae loading on water-soluble and insoluble biocrude fractions from hydrothermal liquefaction of algae. Algal Research 12:60–67. doi:10.1016/j.algal.2015.08.005.
  • Yang, W., X. Li, Z. Li, C. Tong, and L. Feng. 2015. Understanding low-lipid algae hydrothermal liquefaction characteristics and pathways through hydrothermal liquefaction of algal major components: Crude polysaccharides, crude proteins and their binary mixtures. Bioresource Technology 196:99–108. doi:10.1016/j.biortech.2015.07.020.
  • Yeh, T. M., J. G. Dickinson, A. Franck, S. Linic, L. T. Thompson Jr, and P. E. Savage. 2013. Hydrothermal catalytic production of fuels and chemicals from aquatic biomass. Journal of Chemical Technology and Biotechnology 88:13–24. doi:10.1002/jctb.3933.
  • Yu, G., Y. H. Zhang, L. Schideman, T. Funk, and Z. C. Wang. 2011. Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energy & Environmental Science 4:4587–95. doi:10.1039/c1ee01541a.
  • Zakzeski, J., P. C. A. Bruijnincx, A. L. Jongerius, and B. M. Weckhuysen. 2010. The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews 110:3552–99. doi:10.1021/cr900354u.
  • Zhao, C., T. Brück, and J. A. Lercher. 2013. Catalytic deoxygenation of microalgae oil to green hydrocarbons. Green Chemistry 15:1720–39. doi:10.1039/c3gc40558c.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.