242
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Fabrication and characterization of electrospun porous cellulose acetate nanofibrous mats incorporated with capric acid as form-stable phase change materials for storing/retrieving thermal energy

, , , , , & show all

References

  • Agyenim, F., N. Hewitt, P. Eames, and M. Smyth. 2010. A review on materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews 14:615–28. doi:10.1016/j.rser.2009.10.015.
  • Bognitzki, M., W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, and J. H. Wendorff. 2001. Nanostructured fibers via electrospinning. Advanced Materials 13:70–77. doi:10.1002/(ISSN)1521-4095.
  • Bognitzki, M., H. Hou, M. Ishaque, T. Frese, M. Hellwig, C. Schwarte, A. Schaper, J. H. Wendorff, and A. Greiner. 2000. Polymer, metal, and hybrid nano- and mesotubes by coating degradable polymer template fibers (TUFT process). Advanced Materials 12:637–63. doi:10.1002/(SICI)1521-4095(200005)12:9<637::AID-ADMA637>3.0.CO;2-W.
  • Cai, Y. B., M. M. Liu, X. F. Song, J. Zhang, Q. F. Wei, and L. F. Zhang. 2015a. A form-stable phase change material made with a cellulose acetate nanofibrous mat from bicomponent electrospinning and incorporated capric-myristic-stearic acid ternary eutectic mixture for thermal energy storage/retrieval. RSC Advances 5:84245–51. doi:10.1039/C5RA14876F.
  • Cai, Y. B., G. Y. Sun, M. M. Liu, J. Zhang, Q. Q. Wang, and Q. F. Wei. 2015b. Fabrication and characterization of capric–lauric–palmitic acid/electrospun SiO2 nanofibers composite as form-stable phase change material for thermal energy storage/retrieval. Solar Energy 118:87–95. doi:10.1016/j.solener.2015.04.042.
  • Cai, Y. B., X. Zong, J. J. Zhang, J. M. Du, Z. D. Dong, Q. F. Wei, Y. Zhao, Q. Chen, and H. Fong. 2014. The improvement of thermal stability and conductivity via incorporation of carbon nanofibers into electrospun ultrafine composite fibers of lauric acid/polyamide 6 phase change materials for thermal energy storage. International Journal of Green Energy 11:861–75. doi:10.1080/15435075.2013.829068.
  • Cai, Y. B., X. Zong, J. J. Zhang, Y. Y. Hu, Q. F. Wei, G. F. He, X. X. Wang, Y. Zhao, and H. Fong. 2013. Electrospun nanofibrous mats absorbed with fatty acid eutectics as an innovative type of form-stable phase change materials for storage and retrieval of thermal energy. Solar Energy Materials & Solar Cells 109:160–68. doi:10.1016/j.solmat.2012.10.022.
  • Caruso, R. A., J. H. Schattka, and A. Greiner. 2001. Titanium dioxide tubes from sol-gel coating of electrospun polymer fibers. Advanced Materials 13:1577–79. doi:10.1002/1521-4095(200110)13:20<1577::AID-ADMA1577>3.0.CO;2-S.
  • Cedeno, F. O., M. M. Prieto, A. Espina, and J. R. Garcia. 2001. Measurements of temperature and melting heat of some pure fatty acids and their binary and ternary mixtures by differential scanning calorimetry. Thermochimica Acta 369:39–50. doi:10.1016/S0040-6031(00)00752-8.
  • Celebioglu, A., and T. Uyar. 2011. Electrospun porous cellulose acetate fibers from volatile solvent mixture. Materials Letters 65:2291–94. doi:10.1016/j.matlet.2011.04.039.
  • Diaconu, B. M., S. Varga, and A. C. Oliveira. 2010. Experimental assessment of heat storage properties and heat transfer characteristics of a phase change material slurry for air conditioning applications. Applied Energy 87:620–28. doi:10.1016/j.apenergy.2009.05.002.
  • Fang, G. Y., F. Tang, and L. Cao. 2014. Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials. Renewable and Sustainable Energy Reviews 40:237–59. doi:10.1016/j.rser.2014.07.179.
  • Fang, G. Y., F. Tang, and L. Cao. 2016. Dynamic characteristics of cool thermal energy storage systems: A review. International Journal of Green Energy 13:1–13. doi:10.1080/15435075.2014.895739.
  • Farid, M. M., A. M. Khudhair, S. A. K. Razak, and A. H. Said. 2004. A review on phase change energy storage: Materials applications. Energy Conversion and Management 45:1597–615. doi:10.1016/j.enconman.2003.09.015.
  • Hou, H., Z. Jun, A. Reuning, A. Schaper, J. H. Wendorff, and A. Greiner. 2002. Poly(p-xylylene) nanotubes by coating and removal of ultrathin polymer template fibers. Macromolecules 35:2429–31. doi:10.1021/ma011607i.
  • Ince, S., Y. Seki, M. A. Ezan, A. Turgut, and A. Erek. 2015. Thermal properties of myristic acid/graphite nanoplates composite phase change materials. Renewable Energy 75:243–48. doi:10.1016/j.renene.2014.09.053.
  • Inoue, T. H. Y., R. Ishikawa, and M. Suzuki. 2004. Solid-liquid phase behavior of binary fatty acid mixtures 2. Mixtures of oleic acid with lauric acid, myristic acid, and palmitic acid. Chemistry and Physics of Lipids 127:161–73. doi:10.1016/j.chemphyslip.2003.10.013.
  • Kenisarin, M., and K. Mahkamov. 2007. Solar Energy storage using phase change materials. Renewable and Sustainable Energy Reviews 11:1913–65. doi:10.1016/j.rser.2006.05.005.
  • Khajavi, R., and M. Abbasipour. 2012. Electrospinning as a versatile method for fabricating core-shell, hollow and porous nanofibers. Scientia Iranica 19:2029–34. doi:10.1016/j.scient.2012.10.037.
  • Khudhair, A., and M. Farid. 2004. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Conversion and Management 45:263–75. doi:10.1016/S0196-8904(03)00131-6.
  • Kuznik, F., D. David, K. Johannes, and J. J. Roux. 2011. A review on phase change materials integrated in building walls. Renewable and Sustainable Energy Reviews 15:379–91. doi:10.1016/j.rser.2010.08.019.
  • Liang, W. D., P. S. Chen, H. X. Sun, Z. Q. Zhu, and A. Li. 2014. Innovative spongy attapulgite loaded with n-carboxylic acids as composite phase change materials for thermal energy storage. RSC Advances 4:38535–41. doi:10.1039/C4RA04662E.
  • Liu, J. S., Y. Y. Yu, and X. He. 2016. Research on the preparation and properties of lauric acid/expanded perlite phase change materials. Energy and Buildings 110:108–11. doi:10.1016/j.enbuild.2015.10.043.
  • Ma, G. P., Y. Liu, C. Peng, D. W. Fang, B. J. He, and J. Nie. 2011. Paclitaxel loaded electrospun porous nanofibers as mat potential application for chemotherapy against prostate cancer. Carbohydrate Polymers 86:505–12. doi:10.1016/j.carbpol.2011.04.082.
  • Megelski, S., J. S. Stephens, D. B. Chase, and J. F. Rabolt. 2002. Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35:8456–566. doi:10.1021/ma020444a.
  • Moon, S. C., J. K. Choi, and R. J. Farris. 2008. Highly porous polyacrylonitrile/polystyrene nanofibers by electrospinning. Fibers and Polymers 9:276–80. doi:10.1007/s12221-008-0044-y.
  • Nasir, M., H. Matsumoto, M. Minagawa, A. Tanioka, T. Danno, and H. Horibe. 2007. Preparation of porous PVDF nanofiber from PVDF/PVP blend by electrospray deposition. Polymer Journal 39:1060–64. doi:10.1295/polymj.PJ2007037.
  • Rozanna, D., T. G. Chuah, A. Salmiah, T. S. Y. Choong, and M. Sa’ari. 2005. Fatty acids as phase change materials (PCMs) for thermal energy storage: A review. International Journal of Green Energy 1:495–513. doi:10.1081/GE-200038722.
  • Sari, A., and A. Karaipekli. 2009. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Solar Energy Materials & Solar Cells 93:571–76. doi:10.1016/j.solmat.2008.11.057.
  • Sari, A., and K. Kaygusuz. 2003. Some fatty acids used for latent heat storage: Thermal stability and corrosion of metals with respect to thermal cycling. Renewable Energy 28:939–48. doi:10.1016/S0960-1481(02)00110-6.
  • Sharma, A., V. V. Tyagi, C. R. Chen, and D. Buddhi. 2009. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 13:318–45. doi:10.1016/j.rser.2007.10.005.
  • Sharma, S. D., and K. Sagara. 2005. Latent heat storage materials and systems: A review. International Journal of Green Energy 2:1–56. doi:10.1081/GE-200051299.
  • Sharmaa, R. K., P. Ganesana, V. V. Tyagib, H. S. C. Metselaara, and S. C. Sandaranc. 2015. Developments in organic solid-liquid phase change materials and their applications in thermal energy storage. Energy Conversion and Management 95:193–228. doi:10.1016/j.enconman.2015.01.084.
  • Tang, X. H., B. Zhu, M. H. Xu, W. Zhang, Z. Yang, Y. F. Zhang, G. L. Yin, D. N. He, H. Wei, and X. Q. Zhai. 2015. Shape-stabilized phase change materials based on fatty acid eutectics/expanded graphite composites for thermal storage. Energy and Buildings 109:353–60. doi:10.1016/j.enbuild.2015.09.074.
  • Yang, X. J., Y. P. Yuan, N. Zhang, X. L. Cao, and C. Liu. 2014. Preparation and properties of myristic-palmitic-stearic acid/expanded graphite composites as phase change materials for energy storage. Solar Energy 99:259–66. doi:10.1016/j.solener.2013.11.021.
  • Young, Y., Y. J. Ho, L. S. Won, M. B. Moo, and L. S. Jin. 2006. Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers. Materials Letters 60:757–60. doi:10.1016/j.matlet.2005.10.007.
  • Zalba, B., J. M. Marin, L. F. Cabeza, and H. Mehling. 2003. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Applied Thermal Engineering 23:251–83. doi:10.1016/S1359-4311(02)00192-8.
  • Zhang, P., Q. Y. Yue, H. T. He, B. Y. Gao, Y. Wang, and Q. Li. 2014. Study on phase diagram of fatty acids mixtures to determine eutectic temperatures and the corresponding mixing proportions. Applied Energy 115:483–90. doi:10.1016/j.apenergy.2013.10.048.
  • Zong, X., Y. B. Cai, G. Y. Sun, Y. Zhao, F. L. Huang, L. Song, Y. Hu, H. Fong, and Q. F. Wei. 2015. Fabrication and characterization of electrospun SiO2 nanofibers absorbed with fatty acid eutectics for thermal energy storage/retrieval. Solar Energy Materials & Solar Cells 132:183–90. doi:10.1016/j.solmat.2014.08.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.