216
Views
5
CrossRef citations to date
0
Altmetric
Articles

Saraca asoca seeds – A novel candidature for biodiesel production: Studies on yield optimization using ANN coupled GA and properties of biodiesel blends

, , & ORCID Icon
Pages 918-929 | Received 29 Dec 2017, Accepted 25 Sep 2018, Published online: 16 Oct 2018

References

  • Akhtar, T., M. I. Tariq, S. Iqbal, N. Sultana, and C. K. Wei. 2017. Production and characterization of biodiesel from eriobotrya japonica seed oil: An optimization study. International Journal of Green Energy 14 (6):569–74. doi:10.1080/15435075.2017.1310107.
  • Ali, O. M., R. Mamat, G. Najafi, T. Yusaf, and S. M. S. Ardebili. 2015. Optimization of biodiesel-diesel blended fuel properties and engine performance with ether additive using statistical analysis and response surface methods. Energies 8 (12):14136–50. doi:10.3390/en81212420.
  • Ali, S. H., O. Al-Rashed, F. A. Azeez, and S. Q. Merchant. 2011. Potential biofuel additive from renewable sources - kinetic study of formation of butyl acetate by heterogeneously catalyzed transesterification of ethyl acetate with butanol. Bioresource Technology 102 (21):10094–103. doi:10.1016/j.biortech.2011.08.033.
  • AOCS. 1980. Official and tentative methods. Chicago: American Oil Chemist’s Society.
  • Atabani, A. E., I. A. Badruddin, H. H. Masjuki, W. T. Chong, and K. T. Lee. 2014. Pangium edule reinw: A promising non-edible oil feedstock for biodiesel production. Arabian Journal for Science and Engineering 40 (2):583–94. doi:10.1007/s13369-014-1452-5.
  • Atabani, A. E., T. M. I. Mahlia, I. A. Badruddin, H. H. Masjuki, W. T. Chong, and K. T. Lee. 2013. Investigation of physical and chemical properties of potential edible and non-edible feedstocks for biodiesel production, a comparative analysis. Renewable and Sustainable Energy Reviews 21:749–55. doi:10.1016/j.rser.2013.01.027.
  • Badday, A. S., A. Z. Abdullah, and K. T. Lee. 2014. Artificial neural network approach for modeling of ultrasound-assisted transesterification process of crude jatropha oil catalyzed by heteropolyacid based catalyst. Chemical Engineering and Processing: Process Intensification 75:31–37. doi:10.1016/j.cep.2013.10.008.
  • Barik, D., and S. Murugan. 2015. An artificial neural network and genetic algorithm optimized model for biogas production from co-digestion of seed cake of karanja and cattle dung. Waste and Biomass Valorization 6 (6):1015–27. doi:10.1007/s12649-015-9392-1.
  • Bhalerao, S. A., D. R. Verma, V. S. Didwana, and N. C. Teli. 2014. Saraca asoca (Roxb.), De. Wild: An overview. Annals of Plant Sciences 3 (7):770–75.
  • Bhandarkar, S. L. 2013. Bio-diesel for sustainable development of belgaum city transport. International Journal of Engineering and Innovative Technology 3 (3):55–60.
  • Bojan, S., S. Chelladurai, and S. Durairaj. 2011. Response surface methodology for optimization of biodiesel production from high FFA jatropha curcas oil. International Journal of Green Energy 8 (6):607–17. doi:10.1080/15435075.2011.600373.
  • Cao, L., and S. Zhang. 2015. Production and characterization of biodiesel derived from hodgsonia macrocarpa seed oil. Applied Energy 146:135–40. doi:10.1016/j.apenergy.2015.02.062.
  • Chakraborty, R., and A. Banerjee. 2010. Prediction of fuel properties of biodiesel produced by sequential esterification and transesterification of used frying soybean oil using statistical analysis. Waste and Biomass Valorization 1 (2):201–08. doi:10.1007/s12649-010-9016-8.
  • Chongkhong, S., C. Tongurai, P. Chetpattananondh, and C. Bunyakan. 2007. Biodiesel production by esterification of palm fatty acid distillate. Biomass and Bioenergy 31 (8):563–68. doi:10.1016/j.biombioe.2007.03.001.
  • Dhanarajan, G., M. Mandal, and R. Sen. 2014. A combined artificial neural network modeling-particle swarm optimization strategy for improved production of marine bacterial lipopeptide from food waste. Biochemical Engineering Journal 84:59–65. doi:10.1016/j.bej.2014.01.002.
  • Fadhil, A. B., K. M. Ahmed, and M. M. Dheyab. 2017. Silybum marianum L. seed oil: A novel feedstock for biodiesel production. Arabian Journal of Chemistry 10:S683–90. doi:10.1016/j.arabjc.2012.11.009.
  • Gandure, J., C. Ketlogetswe, and A. Temu. 2015. Experimental investigations of fuel properties of biodiesel derived from tylosema esculentum kernel oil. International Journal of Green Energy 12 (6):620–34. doi:10.1080/15435075.2013.872115.
  • Gerpen, J. V., B. Shanks, R. Pruszko, D. Clements, and G. Knothe. 2004. Biodiesel analytic methods. Colorado: National Renewable Energy Laboratory.
  • Girisha, S. T., K. Ravikumar, R. Mrunalini, and V. Girish. 2014. Comparative study of extraction methods and properties of non edible oils for biodiesel production. Asian Journal of Plant Science and Research 4 (1):28–35.
  • Gui, M. M., K. T. Lee, and S. Bhatia. 2008. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33 (11):1646–53. doi:10.1016/j.energy.2008.06.002.
  • Hassan, S. Z., and M. Vinjamur. 2014. Parametric effects on kinetics of esterification for biodiesel production: A taguchi approach. Chemical Engineering Science 110:94–104. doi:10.1016/j.ces.2013.11.049.
  • Holilah, H., D. Prasetyoko, T. P. Oetami, E. B. Santosa, Y. M. Zein, H. Bahruji, H. Fansuri, R. Ediati, and J. Juwari. 2015. The potential of reutealis trisperma seed as a new non-edible source for biodiesel production. Biomass Conversion and Biorefinery 5 (4):347–53. doi:10.1007/s13399-014-0150-6.
  • Izadifar, M. 2005. Neural network modeling of trans isomer formation and unsaturated fatty acid changes during vegetable oil hydrogenation. Journal of Food Engineering 66 (2):227–32. doi:10.1016/j.jfoodeng.2004.03.010.
  • Kant, G., and K. S. Sangwan. 2015. Predictive modelling and optimization of machining parameters to minimize surface roughness using artificial neural network coupled with genetic algorithm. Procedia CIRP 31:453–58. doi:10.1016/j.procir.2015.03.043.
  • Knothe, G., C. Sharp, and T. W. Ryan. 2006. Exhaust emissions of biodiesel, petrodiesel, neat methyl esters, and alkanes in a new technology engine exhaust emissions of biodiesel, petrodiesel, neat methyl esters, and alkanes in a new technology engine. Energy & Fuels 20:403–08. doi:10.1021/ef0502711.
  • Kumar, K. R., K. C. Channarayappa, K. T. Prasanna, and B. Gowda. 2015. Biodiesel production and characterization from non-edible oil tree species aleurites trisperma blanco. Biomass Conversion and Biorefinery 5 (3):287–94. doi:10.1007/s13399-014-0152-4.
  • Likozar, B., and J. Levec. 2014. Transesterification of canola, palm, peanut, soybean and sunflower oil with methanol, ethanol, isopropanol, butanol and tert-butanol to biodiesel: Modelling of chemical equilibrium, reaction kinetics and mass transfer based on fatty acid composition. Applied Energy 123:108–20. doi:10.1016/j.apenergy.2014.02.046.
  • Majdi, A., and M. Rezaei. 2013. Prediction of unconfined compressive strength of rock surrounding a roadway using artificial neural network. Neural Computing and Applications 23 (2):381–89. doi:10.1007/s00521-012-0925-2.
  • Marchetti, J. M., and A. F. Errazu. 2008. Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides. Biomass and Bioenergy 32 (9):892–95. doi:10.1016/j.biombioe.2008.01.001.
  • Meher, L. C., D. Vidya Sagar, and S. N. Naik. 2006. Technical aspects of biodiesel production by transesterification - a review. Renewable and Sustainable Energy Reviews 10 (3):248–68. doi:10.1016/j.rser.2004.09.002.
  • Murthy, H. N., K. S. Joseph, S. Payamalle, S. Betageri, R. Gudodagi, S. Mesta, and S. Kodli. 2017. Garcinia Gummi-Gutta (L.) Robs.: A promising feedstock for biodiesel production. International Journal of Green Energy 14 (14):1178–81. doi:10.1080/15435075.2017.1381610.
  • Ozcanli, M., C. Gungor, and K. Aydin. 2013. Biodiesel fuel specifications: A review. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 35 (7):635–47. doi:10.1080/15567036.2010.503229.
  • Rajendra, M., P. C. Jena, and H. Raheman. 2009. Prediction of optimized pretreatment process parameters for biodiesel production using ANN and GA. Fuel 88 (5):868–75. doi:10.1016/j.fuel.2008.12.008.
  • Ramadhas, A. S., S. Jayaraj, C. Muraleedharan, and K. Padmakumari. 2006. Artificial neural networks used for the prediction of the cetane number of biodiesel. Renewable Energy 31 (15):2524–33. doi:10.1016/j.renene.2006.01.009.
  • Roschat, W., T. Siritanon, B. Yoosuk, T. Sudyoadsuk, and V. Promarak. 2017. Rubber seed oil as potential non-edible feedstock for biodiesel production using heterogeneous catalyst in Thailand. Renewable Energy 101:937–44. doi:10.1016/j.renene.2016.09.057.
  • Serin, H., M. Ozcanli, M. K. Gokce, and G. Tuccar. 2013. Biodiesel production from tea seed (Camellia Sinensis) oil and its blends with diesel fuel. International Journal of Green Energy 10 (4):370–77. doi:10.1080/15435075.2012.655354.
  • Shikha, K., and C. Y. Rita. 2012. Biodiesel production from non edible-oils: A review. Journal of Chemical and Pharmaceutical Research 4 (9):4219–30.
  • Vicente, G., L. F. Bautista, R. Rodríguez, F. J. Gutiérrez, I. Sadaba, R. M. Ruiz-Vázquez, S. Torres-Martínez, and V. Garre. 2009. Biodiesel production from biomass of an oleaginous fungus. Biochemical Engineering Journal 48 (1):22–27. doi:10.1016/j.bej.2009.07.014.
  • Yasin, M. H. M., R. Mamat, A. F. Yusop, R. Rahim, A. Aziz, and L. A. Shah. 2013. Fuel physical characteristics of biodiesel blend fuels with alcohol as additives. Procedia Engineering 53:701–06. doi:10.1016/j.proeng.2013.02.091.
  • Yildizhan, S., E. Uludamar, A. Calik, G. Dede, and M. Ozcanli. 2017. Fuel properties, performance and emission characterization of Waste Cooking Oil (WCO) in a Variable Compression Ratio (VCR) diesel engine. European Mechanical Science 1 (2):56–62. doi:10.26701/ems.321789.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.