174
Views
6
CrossRef citations to date
0
Altmetric
Articles

Optimization and kinetics of the desulfurization of diesel fuel via high shear mixing oxidation assisted by adsorption of sulfones onto chitosan-coated bentonite

, , &

References

  • Ahmadi, M., M. Á. Aguirre, T. Madrakian, and A. Afkhami. 2017. Total sulfur determination in liquid fuels by ICP-OES after oxidation-extraction desulfurization using magnetic graphene oxide. Fuel 210:507–13. doi:10.1016/j.fuel.2017.08.104.
  • Arida, C. V. J., M. D. G. de Luna, C. M. Futalan, and M. W. Wan. 2016. Optimization of As(V) removal using chtiosan-coated bentonite from groundwater using Box-Behnken design: Effects of adsorbent mass, flow rate and initial concentration. Desalination and Water Treatment 57:18739–47. doi:10.1080/19443994.2015.1094420.
  • Bakar, W. A. W. A., R. Ali, A. A. A. Kadir, and W. N. A. W. Mokhtar. 2012. Effect of transition metal oxide catalysts on oxidative desulfurization of model diesel. Fuel Processing Technology 101:78–84. doi:10.1016/j.fuproc.2012.04.004.
  • Becher, P. 2001. Emulsions: Theory and practice. New York: Oxford University Press.
  • Bolla, M. K., H. A. Choudhury, and V. S. Moholkar. 2012. Mechanistic features of ultrasound-assisted oxidative desulfurization of liquid fuels. Industrial and Engineering Chemistry Research 51:9705–12. doi:10.1021/ie300807a.
  • Calagui, M. J. C., D. B. Senoro, C. C. Kan, J. W. L. Salvacion, C. M. Futalan, and M. W. Wan. 2014. Adsorption of indium(III) ions from aqueous solution using chitosan-coated bentonite beads. Journal of Hazardous Materials 277:120–26. doi:10.1016/j.jhazmat.2014.04.043.
  • Chen, T., M. L. Agripa, M. Lu, and M. L. P. Dalida. 2016a. Adsorption of sulfur compounds from diesel with ion-impregnated activated carbons. Energy and Fuels 30:3870–78. doi:10.1021/acs.energyfuels.6b00230.
  • Chen, T. C., J. F. F. Sapitan, F. C. Ballesteros, and M. C. Lu. 2016b. Using activated clay for adsorption of sulfone compounds in diesel. Journal of Cleaner Production 124:378–82. doi:10.1016/j.jclepro.2016.03.004.
  • Chica, A., G. S. Karl, and I. Enrique. 2005. Effects of zeolite structure and aluminum content on thiophene adsorption, desorption and surface reactions. Applied Catalysis B: Environmental 60:231–40. doi:10.1016/j.apcatb.2005.02.031.
  • Choi, A. E. S., S. Roces, N. Dugos, A. Arcega, and M. W. Wan. 2017. Adsorptive removal of dibenzothiophene sulfone from fuel oil using clay material adsorbents. Journal of Cleaner Production 161:267–76. doi:10.1016/j.jclepro.2017.05.072.
  • Choi, A. E. S., S. Roces, N. Dugos, C. M. Futalan, S. S. Lin, and M. W. Wan. 2014. Optimization of ultrasound-assisted oxidative desulfurization of model sulfur compounds using commercial ferrate (VI). Journal of the Taiwan Institute of Chemical Engineers 45:2935–42. doi:10.1016/j.jtice.2014.08.003.
  • Choi, A. E. S., S. Roces, N. Dugos, and M. W. Wan. 2016a. Oxidation by H2O2 of benzothiophene and dibenzothiophene over different polyoxometalate catalysts in the frame of ultrasound and mixing assisted oxidative desulfurization. Fuel 180:127–36. doi:10.1016/j.fuel.2016.04.014.
  • Choi, A. E. S., S. Roces, N. Dugos, and M. W. Wan. 2016b. Mixing-assisted oxidative desulfurization of model sulfur compounds using polyoxometalate/H2O2 catalytic system. Sustainable Environment Research 26:184–90. doi:10.1016/j.serj.2015.11.005.
  • Cychosz, K. A., A. G. Wong-Foy, and A. J. Matzger. 2008. Liquid phase adsorption by microporous coordination polymers: Removal of organosulfur compounds. Journal of the American Chemical Society 130:6938–39. doi:10.1021/ja802121u.
  • Dai, Y., Y. Qi, D. Zhao, and H. Zhang. 2008. An oxidative desulfurization method using ultrasound/Fenton’s reagent for obtaining low and/or ultra-low sulfur diesel fuel. Fuel Processing Technology 89:927–32. doi:10.1016/j.fuproc.2008.03.009.
  • Dalida, M. L. P., A. F. V. Mariano, C. M. Futalan, C. C. Kan, W. C. Tsai, and M. W. Wan. 2011. Adsorptive removal of Cu(II) from aqueous solutions using non-crosslinked and crosslinked chtiosan-coated bentonite beads. Desalination 275:154–59. doi:10.1016/j.desal.2011.02.051.
  • de Luna, M. D. G., C. M. Futalan, C. A. J. Jurado, J. I. Colades, and M. W. Wan. 2018b. Removal of ammonium-nitrogen from aqueous solution using chitosan-coated bentonite: Mechanism and effect of operating parameters. Journal of Applied Polymer Science 45924:1–11.
  • de Luna, M. D. G., M. W. Wan, L. R. Golosinda, C. M. Futalan, and M. C. Lu. 2018a. Kinetics of mixing-assisted oxidative desulfurization of dibenzothiophene in toluene using a phosphotungstic acid/hydrogen peroxide system: Effects of operating conditions. Energy and Fuels 31:9923–29. doi:10.1021/acs.energyfuels.7b01773.
  • Dehghan, R., and M. Anbia. 2017. Zeolites for adsorptive desulfurization from fuels: A review. Fuel Processing Technology 167:99–116. doi:10.1016/j.fuproc.2017.06.015.
  • Dehkordi, A. M., M. A. Sobati, and M. A. Nazem. 2009. Oxidative desulfurization of non-hydrogenated kerosene using hydrogen peroxide and acetic acid. Chinese Journal of Chemical Engineering 17:869–74. doi:10.1016/S1004-9541(08)60289-X.
  • Derakhshani, E., and A. Naghizadeh. 2018. Optimization of humic acid removal by adsorption onto bentonite aqnd montmorillonite nanoparticles. Journal of Molecular Liquids 259;76-81.
  • Dutta, P. K., J. Duta, and V. S. Tripathi. 2004. Chitin and chitosan: Chemistry, properties and applications. Journal of Scientific and Industrial Research (India) 63:20–31.
  • Fan, Q., D. Zhao, and Y. Dai. 2009. The research of ultra-deep desulfurization in diesel via ultrasonic irradiation under the catalytic system of H2O2-CH3COOH-FeSO4. Petroleum Science and Technology 27:302–14. doi:10.1080/10916460701707679.
  • Fu, Y., Z. Gao, J. Ji, K. Li, and Y. Zhang. 2017. Experimental study of flame spread over diesel and deisel-wetted sand beds. Fuel 204:54–62. doi:10.1016/j.fuel.2017.04.100.
  • Futalan, C. M., C. C. Kan, M. L. Dalida, K. J. Hsien, C. Pascua, and M. W. Wan. 2011. Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohydrates Polymer 83:528–36. doi:10.1016/j.carbpol.2010.08.013.
  • Guibal, E. 2004. Interactions of metal ions with chitosan-based sorbents: A review. Separation and Purification Technology 38:43–74. doi:10.1016/j.seppur.2003.10.004.
  • Han, X., and L. Zhou. 2001. Optimization of process variables in the synthesis of butyl butyrate using acid ionic liquid as catalyst. Chemical Engineering Journal 172:459–66. doi:10.1016/j.cej.2011.06.025.
  • Hayyan, M., M. H. Ibrahim, A. Hayyan, I. M. AlNashef, A. M. Alakrach, and M. A. Hashim. 2015. Facile route for fuel desulfurization using generated superoxide ion in ionic liquids. Industrial and Engineering Chemistry Research 54:12236–39. doi:10.1021/acs.iecr.5b03427.
  • Heiskanen, H., P. Denifl, P. Pitkänen, and M. Hurme. 2012. Effect of concentration and temperature on the properties of the microspheres prepared using an emulsion-solvent extraction process. Advanced Powder Technology 23:779–86. doi:10.1016/j.apt.2011.10.007.
  • Ibrahim, M. H., M. Hayyan, M. A. Hashim, and A. Hayyan. 2017. The role of ionic liquids in desulfurization of fuels: A review. Renewable and Sustainable Energy Reviews 76:1534–49. doi:10.1016/j.rser.2016.11.194.
  • Ja’fari, M., S. L. Ebrahimi, and M. R. Khosravi-Nikou. 2018. Ultrasound-assisted oxidative desulfurization and denitrogenation liquid hydrocarbon fuels: A critical review. Ultrasonics Sonochemistry 40:955–68. doi:10.1016/j.ultsonch.2017.09.002.
  • Jalali, M., and M. A. Sobati. 2017. Intensification of oxidative desulfurization of gas oil by ultrasound irradiation: Optimization using Box-Behnken design (BBD). Applied Thermal Engineering 111:1158–70. doi:10.1016/j.applthermaleng.2016.10.015.
  • Jose, N., S. Sengupta, and J. K. Basu. 2011. Optimization of oxidative desulfurization of thiophene using Cu/titanium silicate-1 by box-behnken design. Fuel 90:626–32. doi:10.1016/j.fuel.2010.09.026.
  • Kemmere, M. F., J. Meuldijk, A. A. H. Drinkenburg, and A. L. German. 2001. Emulsification in batch-emulsion polymerization of styrene and vinyl acetate: A reaction calorimetric study. Journal of Applied Polymer Science 79:944–57. doi:10.1002/(ISSN)1097-4628.
  • Kim, D., H. D. Ryu, M. S. Kim, J. Kim, and S. Lee. 2007. Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate. Journal of Hazardous Materials 146:81–85. doi:10.1016/j.jhazmat.2006.11.054.
  • Kodas, T. T., A. Sood, and S. E. Pratsinis. 1987. Submicron alumina powder production by a turbulent flow aerosol process. Powder Technology 50:47–53. doi:10.1016/0032-5910(87)80082-7.
  • Komintarachat, C., and W. Trakarnpruk. 2006. Oxidative desulfurization using polyoxometalates. Industrial and Engineering Chemistry Research 45:1853–56. doi:10.1021/ie051199x.
  • Kondo, S., E. Amano, and M. Kurimoto. 1989. Effect of pore size of silica for the adsorption of proteins. Pure and Applied Chemistry 61:1897–901. doi:10.1351/pac198961111897.
  • Kumar, S. S. K., and S. J. Jiang. 2016. Chitosan-functionalized graphene oxide: A novel adsorbent an efficient adsorption of arsenic from aqueous solution. Journal of Environmental Chemical Engineering 4:1698–713. doi:10.1016/j.jece.2016.02.035.
  • Kundu, S., and A. K. Gupta. 2007. As(III) removal from aqueous solution in fixed bed using iron oxide-coated cement (IOCC): Experimental and modeling studies. Chemical Engineering Journal 129:123–31. doi:10.1016/j.cej.2006.10.014.
  • Lam, V., G. Li, C. Song, J. Chen, C. Fairbridge, R. Hui, and J. Zhang. 2012. A review of electrochemical desulfurization technologies for fossil fuels. Fuel Processing Technology 98:30–38. doi:10.1016/j.fuproc.2012.01.022.
  • Li, S. W., R. M. Gao, W. Zhang, Y. Zhang, and J. S. Zhao. 2018. Heteropolyacids supported on macroporous materials POM@MOF-199@LZSM-5: Highly catalytic performance in oxidative desulfurization of fuel oil with oxygen. Fuel 221:1–11. doi:10.1016/j.fuel.2017.12.093.
  • Li, Y. M., M. L. Bi, Z. P. Wang, R. Li, K. L. Shi, and W. S. Wu. 2016. Organic modification of bentonite and its applicaton for perhenate (an analogue of pertechnetate) removal from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers 62:104–11. doi:10.1016/j.jtice.2016.01.018.
  • Ligaray, M., C. M. Futalan, M. D. de Luna, and M. W. Wan. 2018. Removal of chemical oxygen demand from thin-film transistor liquid-crystal display wastewater using chitosan-coated bentonite: Isotherm, kinetics and optimization studies. Journal of Cleaner Production 175:145–54. doi:10.1016/j.jclepro.2017.12.052.
  • Liu, X., B. Zhang, W. Zhao, L. Wang, D. Xie, W. Huo, Y. Wu, and J. Zhang. 2017. Comparative effects of sulfuric and nitric acid rain on litter decomposition and soil microbial community in subtropical plantation of Yangtze River Delta region. Science of the Total Environment 601-602:669–78. doi:10.1016/j.scitotenv.2017.05.151.
  • Lu, M. C., M. L. Agripa, M. W. Wan, and M. L. P. Dalida. 2013. Removal of oxidized sulfur compounds using different types of activated carbon, aluminum oxide, and chitosan-coated bentonite. Desalination and Water Treatment 52:873–79. doi:10.1080/19443994.2013.826330.
  • Lu, M. C., L. C. C. Biel, M. W. Wan, R. de Leon, and S. Arco. 2014. The oxidative desulfurization of fuels with a transition metal catalyst: A comparative assessment of different mixing techniques. International Journal of Green Energy 11:833–48. doi:10.1080/15435075.2013.830260.
  • Ma, X., A. Zhou, and C. Song. 2007. A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption. Catalysis Today 123:276–84. doi:10.1016/j.cattod.2007.02.036.
  • Mokhtar, W. N. A. W., W. A. W. A. Bakar, R. Ali, and A. A. A. Kadir. 2015. Optimization of oxidative desulfurization of Malaysian Euro II diesel fuel utilizing tert-butyl hydroperoxide-dimethylformamide system. Fuel 161:26–33. doi:10.1016/j.fuel.2015.08.031.
  • Qui, J., G. Wang, D. Zeng, Y. Tang, M. Wang, and Y. Li. 2009. Oxidative desulfurization of diesel fuel using amphiphilic quaternary ammonium phosphomolybdate catalysts. Fuel Processing Technology 90:1538–42. doi:10.1016/j.fuproc.2009.08.001.
  • Ray, S. S., and M. Okamoto. 2003. Polymer/layered silicate nanocomposites: A review from preparation to processing. Progress in Polymer Science 28:1539–641. doi:10.1016/j.progpolymsci.2003.08.002.
  • Sachdeva, T. O., and K. K. Pant. 2010. Deep desulfurization of diesel via peroxide oxidation using phosphotungstic acid as phase transfer catalyst. Fuel Processing Technology 91:1133–38. doi:10.1016/j.fuproc.2010.03.027.
  • Saleh, T. A., and G. I. Danmaliki. 2016. Influence of acidic and basic treatments of activated carbon derived from waste rubber tires on adsorptive desulfurization of thiophenes. Journal of the Taiwan Institute of Chemical Engineers 60:460–68. doi:10.1016/j.jtice.2015.11.008.
  • Shah, S. D., D. R. Cocker, J. W. Miller, and J. M. Norbeck. 2004. Emission rates of particulate matter and elemental and organic carbon from in-use diesel engines. Environmental Science and Technology 38:2544–50.
  • Song, C. 2003. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today 86:211–63. doi:10.1016/S0920-5861(03)00412-7.
  • Song, C., and X. Ma. 2006. Practical advances in petroleum processing. New York: Springer-Verlag.
  • Song, C. S., C. S. Hsu, and I. Mochida. 2000. Chemistry of diesel fuels. Taylor & Francis: New York.
  • Srivastava, V. C. 2012. An evaluation of desulfurization technologies for sulfur removal from liquid fuels. RSC Advances 2:759–83. doi:10.1039/C1RA00309G.
  • Starks, C. M., C. L. Liotta, and M. Halpern. 1994. Phase-transfer catalysis: Fundamentals, applications and industrial perspectives. New York: Chapman and Hall, Inc.
  • Wan, M. W., C. C. Kan, B. D. Rogel, and M. L. P. Dalida. 2010. Adsorption of copper (II) and lead (II) ions from aqueous solution on chitosan-coated sand. Carbohydrate Polymers 80:891–99. doi:10.1016/j.carbpol.2009.12.048.
  • Wan, M. W., and T. F. Yen. 2007. Enhance efficiency of tetraoctylammonium fluoride applied to ultrasound-assisted oxidative desulfurization (UAOD) process. Applied Catalysis A: General 319:237–45. doi:10.1016/j.apcata.2006.12.008.
  • Wang, D. H., E. W. Qian, H. Amano, K. Okata, A. Ishihara, and T. Kabe. 2003. Oxidative desulfurization of fuel oil: Part I. Oxidation of dibenzothiophenes using tert-butyl hydroperoxide. Applied Catalysis A: General 253:91–99. doi:10.1016/S0926-860X(03)00528-3.
  • Yang, C., K. Zhao, Y. Cheng, G. Zeng, M. Zhang, J. Shao, and L. Lu. 2016. Catalytic oxidative desulfurization of BT and DBT from n-octane using cyclohexane peroxide and catalyst of molybdenum supported on 4A molecular sieve. Separation and Purification Technology 163:153–61. doi:10.1016/j.seppur.2016.02.050.
  • Yang, Y., G. Lv, L. Deng, B. Lu, J. Li, J. Zhang, J. Shi, and S. Du. 2017. Ultra-deep desulfurization of diesel fuel via selective adsorption over modified activated carbon assisted by pre-oxidation. Journal of Cleaner Production 161:422–30. doi:10.1016/j.jclepro.2017.05.112.
  • Yun, G. N., and Y. K. Lee. 2013. Beneficial effects of polycyclic aromatics on oxidative desulfurization of light cycle oil over phosphotungstic acid (PTA) catalyst. Fuel Processing Technology 114:1–5. doi:10.1016/j.fuproc.2013.03.035.
  • Zhou, A., X. Ma, and C. Song. 2009. Effects of oxidative modification of carbon surface on the adsorption of sulfur compounds in diesel fuel. Applied Catalysis B: Environmental 87:190–99. doi:10.1016/j.apcatb.2008.09.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.