331
Views
12
CrossRef citations to date
0
Altmetric
Articles

A coordinated control strategy using supercapacitor energy storage and series dynamic resistor for enhancement of fault ride-through of doubly fed induction generator

, ORCID Icon &
Pages 615-626 | Received 20 Dec 2017, Accepted 26 Mar 2019, Published online: 14 Apr 2019

References

  • Abad, G., J. Lopez, M. A. Rodrıquez, L. Marroyo, and G. Iwanski. 2011. Doubly fed induction machine: Modeling and control for wind energy generation. Vol. 86. Hoboken, New Jersey: John Wiley & Sons, Inc. doi:10.2340/00015555-0019.
  • Abbey, C., and G. Joos. 2007. Supercapacitor energy storage for wind energy applications. IEEE Transaction on Industry Applications 43 (3):769–76. doi:10.1109/TIA.2007.895768.
  • Ali, M. H., and M. M. Hossain. 2016. Transient stability improvement of doubly fed induction generator based variable speed wind generator using DC resistive fault current limiter. IET Renewable Power Generation 10 (2):150–57. doi:10.1049/iet-rpg.2015.0150.
  • Arani, M. F. M., and Y. A. R. I. Mohamed. 2016. Assessment and enhancement of a full-scale PMSG-based wind power generator performance under faults. IEEE Transactions on Energy Conversion 31 (2):728–39. doi:10.1109/TEC.2016.2526618.
  • Behzad, S., M. Negnevitsky, A. Jalilian, M. Tarafdar, and K. M. Muttaqi. 2017. Electrical power and energy systems low voltage ride-through enhancement of DFIG-based wind turbine using DC link switchable resistive type fault current limiter. International Journal of Electrical Power and Energy Systems 86:104–19. doi:10.1016/j.ijepes.2016.10.001.
  • Dösoglu M. Kenan, and Aysen Basa Arsoy. 2016. “Transient Modeling and Analysis of a DFIG Based Wind Farm with Supercapacitor Energy Storage.” International Journal of Electrical Power and Energy Systems 78: 414–21. doi:10.1016/j.ijepes.2015.12.020.
  • Beltran-Pulido, A., J. Cortes-Romero, and H. Coral-Enriquez. 2018. Robust active disturbance rejection control for LVRT capability enhancement of DFIG-based wind turbines. Control Engineering Practice December 2017). Elsevier Ltd. 77. :174–89. doi:10.1016/j.conengprac.2018.06.001.
  • El-Naggar, A., and I. Erlich. 2017. Short-circuit current reduction techniques of the doubly-fed induction generator based wind turbines for fault ride through enhancement. IET Renewable Power Generation 11 (7):1033–40. doi:10.1049/iet-rpg.2016.0372.
  • Erlich, I., J. Kretschmann, J. Fortmann, S. Mueller-Engelhardt, and H. Wrede. 2007. Modeling of wind turbines based on doubly-fed induction generators for power system stability studies. IEEE Transactions on Power Systems 22 (3):909–19. doi:10.1109/TPWRS.2007.901607.
  • Gayen, P. K., D. Chatterjee, and S. K. Goswami. 2016. A low-voltage ride-through capability enhancement scheme of doubly fed induction generator based wind plant considering grid faults. Journal of Renewable and Sustainable Energy 8 (2). doi: 10.1063/1.4943121.
  • Gkavanoudis, Spyros I, and Charis S Demoulias. 2013. “A Combined Fault Ride-through and Power Smoothing Control Method for Full-Converter Wind Turbines Employing Supercapacitor Energy Storage System.” Electric Power Systems Research 106. Elsevier 62–72. doi:10.1016/j.epsr.2013.08.007.
  • Hansen, A. D., and G. Michalke. 2007. Fault ride-through capability of dfig wind turbines. Renewable Energy 32 (9):1594–610. doi:10.1016/j.renene.2006.10.008.
  • Huang, Q., X. Zou, D. Zhu, and Y. Kang. 2016. Scaled current tracking control for doubly fed induction generator to ride-through serious. IEEE Transaction on Power Electronics 31 (3):2150–65. doi:10.1109/TPEL.2015.2429153.
  • Huchel, Ł., M. S. ElMoursi, and H. H. Zeineldin. 2015. A parallel capacitor control strategy for enhanced FRT capability of DFIG. IEEE Transactions on Sustainable Energy 6 (2):303–12. doi:10.1109/TSTE.2014.2371925.
  • Li, W., P. Chao, X. Liang, Y. Sun, J. Qi, and X. Chang. 2018. Modeling of complete fault ride-through processes for DFIG-based wind turbines. Renewable Energy 118. Elsevier Ltd:1001–14. doi:10.1016/j.renene.2017.10.076.
  • Lille, E. C. D., L. Peng, and B. Francois. 2009. Improved crowbar control strategy of DFIG based wind turbines for grid fault ride-through. IEEE Applied Power Electronics Conference, APEC 1932–38.
  • Lima, F. K. A., A. Luna, P. Rodriguez, E. H. Watanabe, and F. Blaabjerg. 2010. Rotor voltage dynamics in the doubly fed induction generator during gridfaults. IEEE Transactions on Power Electronics 25 (1):118–30. doi:10.1109/TPEL.2009.2025651.
  • Ling, Y., and X. Cai. 2013. Rotor current dynamics of doubly fed induction generators during grid voltage dip and rise. International Journal of Electrical Power and Energy Systems 44(1). Elsevier Ltd:17–24. doi:10.1016/j.ijepes.2012.07.032.
  • López, J., E. Gubía, E. Olea, J. Ruiz, and L. Marroyo. 2009. Ride through of wind turbines with doubly fed induction generator under symmetrical voltage dips. IEEE Transactions on Industrial Electronics 56 (10):4246–54. doi:10.1109/TIE.2009.2028447.
  • Lopez, J., E. Gubıa, P. Sanchis, X. Roboam, and L. Marroyo. 2008. Wind turbines based on doublyfed induction generatorunderasymmetrical voltage dips. IEEE Transactions on Energy Conversion 23 (1):321–30. doi:10.1109/TEC.2007.914317.
  • Mehta, B., P. Bhatt, and V. Pandya. 2014. Electrical power and energy systems small signal stability analysis of power systems with DFIG based wind power penetration. International Journal of Electrical Power and Energy Systems 58. Elsevier Ltd:64–74. doi:10.1016/j.ijepes.2014.01.005.
  • Mohammadi, J., S. Afsharnia, E. Ebrahimzadeh, and F. Blaabjerg. 2017. An enhanced LVRT scheme for DFIG-based WECSs under both balanced and unbalanced grid voltage sags. Electric Power Components and Systems 45(11). Taylor & Francis:1242–52. doi:10.1080/15325008.2017.1333547.
  • Mohammadi, J., S. Afsharnia, S. Vaez-Zadeh, and S. Farhangi. 2016. Improved fault ride through strategy for doubly fed induction generator based wind turbines under both symmetrical and asymmetrical grid faults. IET Renewable Power Generation Research 10 (8):1114–22. doi:10.1049/iet-rpg.2015.0586.
  • Müller, S., M. Deicke, W. De, and R. Doncker. 2002. Doubly fed induction generator systems for wind turbines. Industry Applications Magazine, IEEE 8 (3):26–33. doi:10.1109/2943.999610.
  • Naderi, S. B., M. Jafari, and M. T. Hagh. 2011. Impact of bridge type fault current limiter on power system. International Conference on Electrical and Electronics Engineering 1–4.
  • Naderi, Seyed Behzad, Michael Negnevitsky, Kashem M. Muttaqi, Xian-Yong Xiao, Ruo-Huan Yang, Xiao-Yuan Chen, Zi-Xuan Zheng, Wang, Dongxiao, Xiaodan Gao, Ke Meng, Jing Qiu, Loi Lei Lai, and Sen Gao. 2018. “Utilisation of Kinetic Energy from Wind Turbine for Grid Connections: A Review Paper.” IET Renewable Power Generation 12 (6): 615–24. doi:10.1049/iet-rpg.2017.0590.
  • Naidu, N. K. S., and B. Singh. 2017. Grid-interfaced DFIG-based variable speed wind energy conversion system with power smoothening. IEEE Transactions on Sustainable Energy 8 (1):51–58. doi:10.1109/TSTE.2016.2582520.
  • Rahimi, M., and M. Parniani. 2010. Coordinated control approaches for low-voltage ride-through enhancement in wind turbines with doubly fed induction generators. IEEE Trans. Energy Convers. 25 (3):873–83. papers2://publication/uuid/EA4C4D1A-DF68-41FF-A730-4E60A3683232.
  • Rashid, G., and M. H. Ali. 2017. Nonlinear control-based modified BFCL for LVRT capacity enhancement of DFIG-based wind farm. IEEE Transactions on Energy Conversion 32 (1):284–95. doi:10.1109/TEC.2016.2603967.
  • Ren, G., J. Liu, J. Wan, Y. Guo, and D. Yu. 2017. Overview of wind power intermittency: Impacts, measurements, and mitigation solutions. Applied Energy 204. Elsevier Ltd:47–65. doi:10.1016/j.apenergy.2017.06.098.
  • Jerin, R. A., P. K. Amalorpavaraj, U. Subramaniam, M. Shawky, and E. Moursi. 2018. Review on FRT solutions for improving transient stability in DFIG-WTs. IET Renewable Power Generation 12 (15):1786–99. doi:10.1049/iet-rpg.2018.5249.
  • Sahoo, S. S., A. Roy, and K. Chatterjee. 2016. Fault ride-through enhancement of wind energy conversion system adopting a mechanical controller. In National Power Systems Conference (NPSC), Bhubaneswar, pp 1–5. India, IEEE.
  • Sarrias-Mena, R., L. M. Fernández-Ramírez, C. A. García-Vázquez, and F. Jurado. 2014a. Improving grid integration of wind turbines by using secondary batteries. Renewable and Sustainable Energy Reviews 34. Elsevier:194–207. doi:10.1016/j.rser.2014.03.001.
  • Sarrias-Mena, R., L. M. Fernández-Ramírez, C. A. García-Vázquez, and F. Jurado. 2014b. Dynamic evaluation of two configurations for a hybrid DFIG-based wind turbine integrating battery energy storage system. Wind Energy 18 (9):1561–77. doi:10.1002/we.
  • Worku, Muhammed Y., and M. A. Abido. 2014. “Supercapacitor Energy Storage System for Fault Ride through in Grid-Connected PV Array.” 2014 Saudi Arabia Smart Grid Conference, SASG 2014. doi:10.1109/SASG.2014.7274292.
  • Xiang, D., P. J. T. Li Ran, and S. Yang. 2006. Control of a doubly fed induction generator in a wind turbine during grid fault ride-through. IEEE Transactions on Energy Conversion 21 (September):652–62. doi:10.1109/TEC.2006.875783.
  • Xiao, S., H. Geng, H. Zhou, and G. Yang. 2013a. Analysis of the control limit for rotor-side converter of doubly fed induction generator-based wind energy conversion system under various voltage dips. IET Renewable Power Generation 7 (1):71–81. doi:10.1049/iet-rpg.2011.0348.
  • Xiao, S., G. Yang, H. Zhou, and H. Geng. 2013b. An LVRT control strategy based on flux linkage tracking for DFIG-based WECS. Ieee Transactions on Industrial Electronics 60 (7):2820–32. doi:10.1109/TIE.2012.2205354.
  • Xiao, X.-Y., R.-H. Yang, X.-Y. Chen, Z.-X. Zheng, and C.-S. Li. 2018a. Enhancing fault ride-through capability of DFIG with modified SMES-FCL and RSC control. IET Generation, Transmission & Distribution 12 (1):258–66. doi:10.1049/iet-gtd.2016.2136.
  • Xiao, X. Y., R. H. Yang, X. Y. Chen, and Z. X. Zheng. 2018b. Integrated DFIG protection with a modified SMES-FCL under symmetrical and asymmetrical faults. IEEE Transactions on Applied Superconductivity 28 (4). doi: 10.1109/TASC.2018.2802782.
  • Xie, D., Z. Xu, L. Yang, J. Østergaard, Y. Xue, and K. P. Wong. 2013. A comprehensive LVRT control strategy for DFIG wind turbines with enhanced reactive power support. IEEE TRANSACTIONS ON Power Systems 28 (3):3302–10. doi:10.1109/TPWRS.2013.2240707.
  • Yang, J., J. E. Fletcher, and J. O. Reilly. 2009. A series-dynamic-resistor-based converter protection scheme for doubly-fed induction generatorduring various fault conditions. IEEE Transaction on Energy Conversion 25 (2):422–32. doi:10.1109/TEC.2009.2037970.
  • Yang, L., Z. Xu, J. Østergaard, Z. Y. Dong, and K. P. Wong. 2012. Advanced control strategy of DFIG wind turbines for power system fault ride through. IEEE Transactions on Power Systems 27 (2):713–22. doi:10.1109/TPWRS.2011.2174387.
  • Yao, J., H. Li, Y. Liao, and Z. Chen. 2008. An improved control strategy of limiting the DC-link voltage fluctuation for a doubly fed induction wind generator. IEEE Transactions on Power Electronics 23 (3):1205–13.
  • Zaragoza, J., J. Pou, A. Arias, C. Spiteri, E. Robles, and S. Ceballos. 2011. Study and experimental verification of control tuning strategies in a variable speed wind energy conversion system. Renewable Energy 36 (5):1421–30. doi:10.1016/j.renene.2010.11.002.
  • Zhou, D., and F. Blaabjerg. 2018. Optimized demagnetizing control of DFIG power converter for reduced thermal stress during symmetrical grid fault. IEEE Transactions on Power Electronics 33(12). IEEE:10326–40. doi:10.1109/TPEL.2018.2803125.
  • Zhou, L., J. Liu, Y. Zhu, and S. Zhou. 2012. Robust demagnetization control of doubly fed induction generator during grid faults. Conference Proceedings - 2012 IEEE 7th International Power Electronics and Motion Control Conference - ECCE Asia, IPEMC 2012 2 (2009):1446–51. doi:10.1109/IPEMC.2012.6259032.
  • Zhu, D., X. Zou, S. Zhou, W. Dong, Y. Kang, and H. Jiabing. 2018. Feedforward current references control for DFIG-based wind turbine to improve transient control performance during grid faults. IEEE Transactions on Energy Conversion 33 (2):670–81. doi:10.1109/TEC.2017.2779864.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.