325
Views
11
CrossRef citations to date
0
Altmetric
Articles

Comparative thermodynamic performance analysis of a cascade system for cooling and heating applications

&
Pages 674-686 | Received 12 Jan 2018, Accepted 08 May 2019, Published online: 24 May 2019

References

  • Bai, T., G. Yan, and J. Yu. 2017. Performance evolution on a dual-temperature CO2 transcritical refrigeration cycle with two cascade ejectors. Applied Thermal Engineering 120:26–35. doi:10.1016/j.applthermaleng.2017.03.091.
  • Bansal, P. K., 2011. In-tube boiling heat transfer of CO2-lubricant mixture at low temperatures: Preliminary results, ASHRAE conference, ASHRAE-86018, Las Vegas, USA, p. 9.
  • Bejan, A., G. Tsatsaronis, and M. Moran. 1996. Thermal design and optimization. New York: Wiley Inter-science.
  • Boyaghchi, F. A., and S. Asgari. 2017. A comparative study on exergetic, exergoeconomic and exergoenvironmental assessments of two internal auto-cascade refrigeration cycles. Applied Thermal Engineering 122:723–37. doi:10.1016/j.applthermaleng.2017.05.065.
  • Cabello, R., D. Sánchez, R. Llopis, I. Arauzo, and E. Torrella. 2015. Experimental comparison between R152a and R134a working in a refrigeration facility equipped with a hermetic compressor. International Journal of Refrigeration 60:92–105. doi:10.1016/j.ijrefrig.2015.06.021.
  • Cabello, R., D. Sánchez, R. Llopis, J. Catalán, L. Nebot-Andrés, and E. Torrella. 2017. Energy evaluation of R152a as drop in replacement for R134a in cascade refrigeration plants. Applied Thermal Engineering 110:972–84. doi:10.1016/j.applthermaleng.2016.09.010.
  • Dincer, I., and M. A. Rosen. 2012. Exergy: Energy, environment and sustainable development. Newnes.
  • Dubey, A. M., G. D. Agrawal, and S. Kumar. 2015b. Thermodynamic analysis of a transcritical CO 2/propylene cascade system with split unit in HT cycle. Journal of the Brazilian Society of Mechanical Sciences and Engineering 37 (4):1365–78. doi:10.1007/s40430-014-0244-x.
  • Dubey, A. M., G. D. Agrawal, and S. Kumar. 2016. Performance evaluation and optimal configuration analysis of a transcritical carbon dioxide/propylene cascade system with vortex tube expander in high-temperature cycle. Clean Technologies and Environmental Policy 18 (1):105–22. doi:10.1007/s10098-015-0998-6.
  • Dubey, A. M., S. Kumar, and G. D. Agrawal. 2014. Thermodynamic analysis of a transcritical CO2/propylene (R744–R1270) cascade system for cooling and heating applications. Energy Conversion and Management 86:774–83. doi:10.1016/j.enconman.2014.05.105.
  • Dubey, A. M., S. Kumar, and G. D. Agrawal. 2015a. Numerical optimization of a transcritical CO 2/propylene cascaded refrigeration-heat pump system with economizer in HT cycle. Sadhana 40 (2):437–54. doi:10.1007/s12046-014-0319-5.
  • EES, Klein S.A.. 2017. Engineering equation solver. Academic commercial, version 10. www.fchart.com/ees
  • Eini, S., H. Shahhosseini, N. Delgarm, M. Lee, and A. Bahadori. 2016. Multi-objective optimization of a cascade refrigeration system. Exergetic, Economic, Environmental, and Inherent Safety Analysis, Applied Thermal Engineering 107:804–17.
  • Eldakamawy, M. H., M. V. Sorin, and M. Brouillette. 2017. Energy and exergy investigation of ejector refrigeration systems using retrograde refrigerants. International Journal of Refrigeration 78:176–92. doi:10.1016/j.ijrefrig.2017.02.031.
  • Fernandez-Seara, J., J. Sieres, and M. Vazquez. 2006. Compression–Absorption cascade refrigeration system. Applied Thermal Engineering 26:502–12. doi:10.1016/j.applthermaleng.2005.07.015.
  • Gholamian, E., P. Hanafizadeh, and P. Ahmadi. 2018. Advanced exergy analysis of a carbon dioxide ammonia cascade refrigeration system. Applied Thermal Engineering 137:689–99. doi:10.1016/j.applthermaleng.2018.03.055.
  • Ghoubali, R., P. Byrnea, J. Miriel, and F. Bazantay. 2014. Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings. Energy and Buildings 72:141–49. doi:10.1016/j.enbuild.2013.12.047.
  • Girotto, S., S. Minetto, and P. Neksa. 2004. Commercial refrigeration system with CO2 as refrigerant experimental results. International Journal of Refrigeration 27:717–23. doi:10.1016/j.ijrefrig.2004.07.004.
  • Hwang, Y., H. Huff, R. Preissner, and R. Radermacher, 2001. CO2 transcritical cycles for high temperature application, in: Proceedings of 2001 ASME International Mechanical Engineering Congress in New York, ÎMECE2001/AES-23630,November 11-16, 2001, New York, NY.
  • Kotas, T. 1985. The exergy method of thermal plant analysis. Krieger Publishing Company. Malabar, FL
  • Lee, T. S., C. H. Liu, and T. W. Chen. 2006. Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems. International Journal of Refrigeration 29 (7):1100–08. doi:10.1016/j.ijrefrig.2006.03.003.
  • Mohammadi, S. H., and M. Ameri. 2014. Energy and exergy comparison of a cascade air conditioning system using different cooling strategies. International Journal of Refrigeration 41:14–26. doi:10.1016/j.ijrefrig.2013.06.015.
  • Mosaffa, A. H., L. G. Farshi, C. A. I. Ferreira, and M. A. Rosen. 2016. Exergoeconomic and environmental analyses of CO2/NH3 cascade refrigeration systems equipped with different types of flash tank intercoolers. Energy Conversion and Management 117:442–53. doi:10.1016/j.enconman.2016.03.053.
  • Özgür, A. E., H. C. Bayrakçi, and A. E. Akdağ. 2009. Kritik Nokta Üstü Çevrimli CO2 Soğutma sistemlerinde optimum Gaz Soğutucu Basıncı: Yeni Bir Korelâsyon. Isi Bilimi Ve Teknigi Dergisi 29 (2):23–28.
  • Parise, J. A., and R. Marques. 2005. Editorial in “The role of heat transfer in refrigeration”. Heat Transfer Engineering 26 (9):1–4. doi:10.1080/01457630500205521.
  • Powell, R. L. 2002. CFC Phase-out; have we met the challenge. Journal of Fluorine Chemistry 114:237–50. doi:10.1016/S0022-1139(02)00030-1.
  • Robinson, D. M., and E. A. Groll. 1998. Efficiencies of transcritical CO2 cycles with and without an expansion turbine. International Journal of Refrigeration 21 (7):577–89. doi:10.1016/S0140-7007(98)00024-3.
  • Sanz-Kock, C., R. Llopis, D. Sánchez, R. Cabello, and E. Torrella. 2014. Experimental evaluation of a R134a/CO2 cascade refrigeration plant. Applied Thermal Engineering 73 (1):41–50. doi:10.1016/j.applthermaleng.2014.07.041.
  • Sarkar, J., S. Bhattacharyya, and M. R. Gopal. 2006. Simulation of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications. International Journal of Refrigeration 29:735–43. doi:10.1016/j.ijrefrig.2005.12.006.
  • Silva, A. D., E. P. B. Filho, and A. H. P. Antunes. 2012. Comparison of a R744 cascade refrigeration system with R404A and R22 conventional systems for supermarkets. Applied Thermal Engineering 41:30–35. doi:10.1016/j.applthermaleng.2011.12.019.
  • Solkane 8.0.0. Accessed May 15, 2018 http://downloads.informer.com/solkane-refrigerants/download/
  • Song, Y., D. Li, D. Yang, L. Jin, F. Cao, and X. Wang. 2017. Performance comparison between the combined R134a/CO2 heat pump and cascade R134a/CO2 heat pump for space heating. International Journal of Refrigeration 74:592–605. doi:10.1016/j.ijrefrig.2016.12.001.
  • Sun, Z., Y. Liang, S. Liu, W. Ji, R. Zang, R. Liang, and Z. Guo. 2016. Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A. Applied Energy 184:19–25. doi:10.1016/j.apenergy.2016.10.014.
  • Tripp, J. T. 1987. The UNEP montreal protocol: Industrialized and developing countries sharing the responsibility for protecting the stratospheric ozone layer. NYUJ Int’l L. & Pol. 20:733.
  • Yılmaz, F., R. Selbas, A. E. Ozgur, and M. T. Balta. 2016. Performance analyses of CO2-N2O cascade system for cooling. Energy, Transportation and Global Warming, Green Energy and Technology. doi:10.1007/978-3-319-30127-3_37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.