268
Views
6
CrossRef citations to date
0
Altmetric
Articles

Experimental and numerical analysis of a helical coil solar cavity receiver: Thermal oil as the heat transfer fluid

&
Pages 716-732 | Received 16 Feb 2018, Accepted 13 May 2019, Published online: 23 May 2019

References

  • Arasu., A. V., and S. T. Sornakumar. 2007. Performance characteristics of the solar parabolic trough collector with hot water generation system. Thermal Science 10 (2):167–74.
  • ASM Handbook Committee. 1978. Properties and selection – nonferrous alloys and pure metals, Vol. 2. Metals Park, OH: American Society for Metals.
  • Bader, R., A. Pedretti, M. Barbato, and A. Steinfeld. 2015. An air-based corrugated cavity-receiver for solar parabolic trough concentrators. Applied Energy 138 (January):337–45. doi:10.1016/j.apenergy.2014.10.050.
  • Bejan, A. 1995. Convection heat transfer. 2 nd. New York, NY: John Wiley & Sons.
  • Boukelia, T. E., O. Arslan, and M. S. Mecibah. 2017. Potential assessment of a parabolic trough solar thermal power plant considering hourly analysis: ANN-Based approach. Renewable Energy 105:324–33. doi:10.1016/j.renene.2016.12.081.
  • Burkholder, F., and C. F. Kutscher. 2009. “Heat Loss Testing of Schott’s 2008 PTR70 Parabolic Trough Receiver.” NREL Technical Report, no. May:58. http://www.nrel.gov/docs/fy09osti/45633.pdf.
  • Churchill, S. W., and M. Bernstein. 1977. A Correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow. Journal of Heat Transfer 94:300–06. doi:10.1115/1.3450685.
  • Dudley, V., G. J. Kolb, A. R. Mahoney, T. R. Mancini, C. W. Matthews, M. Sloan, and D. Kearney, 1994. Test Results: SEGS LS-2 Solar Collector. SAND 94-1884. Sandia National Laboratories, Albuquerque, NM. n.d. doi: 10.3168/jds.S0022-0302(94)77044-2
  • Dudley, V. E.; Kolb, G. J.; Mahoney, A. R.; et al. 1994. “Test Results: SEGS LS-2 solar collector.” SAND94-1884. Albuquerque, NM, SANDIA National Laboratories. doi: 10.3168/jds.S0022-0302(94)77044-2
  • Espinosa-Rueda, G., J. L. N. Hermoso, N. Martínez-Sanz, and M. Gallas-Torreira. 2016. Vacuum evaluation of parabolic trough receiver tubes in a 50 MW concentrated solar power plant. Solar Energy 139:36–46. Elsevier Ltd. doi:10.1016/j.solener.2016.09.017.
  • Forristall, R. 2003. “Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver.” https://doi.org/NREL/TP-550-34169.
  • Francia, G. 1968. Pilot plants of solar steam generation systems. Journal of Solar Energy 12:51–64. Pregamon Press. doi:10.1016/0038-092X(68)90024-8.
  • Frier, D., and R. G. Cable 1999. “An overview and operation optimization of the kramer junction solar electric generating system.” Proc. ISES World Congress, Jerusalem, 241–46.
  • Ghorbani, N., H. Taherian, M. Gorji, and H. Mirgolbabaei. 2010. Experimental study of mixed convection heat transfer in vertical helically coiled tube heat exchangers. Experimental Thermal and Fluid Science 34(7):900–05. Elsevier Inc. doi:10.1016/j.expthermflusci.2010.02.004.
  • Gnielinski, V. 1976, April. ‘New equations for heat and mass transfer in turbulent pipe and channel flow.’ International Chemical Engineering 16 (2): 359–63.
  • Goswami, D. Y. 1995. Engineering of solar photocatalytic detoxification and disinfection process. Journal Advanced Solar Energy 10:165–209.
  • Goswami, D. Y., and F. Xu. 1999. Analysis of a new thermodynamic cycle for combined power and cooling using low and mid temperature solar collectors. Journal of Solar Energy Engineering 121 (2):91–97. doi:10.1115/1.2888152.
  • Green, M. A. 2004. Recent Development in photovoltaics. Journal of Solar Energy 76:2004.
  • Guo, J., X. Huai, and Z. Liu. 2016. Performance investigation of parabolic trough solar receiver. Applied Thermal Engineering Journal 95:357–64. doi:10.1016/j.applthermaleng.2014.12.032.
  • Hardik, B. K., P. K. Baburajan, and S. V. Prabhu. 2015. Local heat transfer coefficient in helical coils with single phase flow. International Journal of Heat and Mass Transfer 89:522–38. doi:10.1016/j.ijheatmasstransfer.2015.05.069.
  • Incropera, F., and D. DeWitt. 1990. Fundamentals of heat and mass transfer. Third Edit ed. New York,NY: John Wiley and Sons.
  • Kalb, C. E., and J. D. Seader. 1974. ‘Fully developed viscousflow heat transfer in curved circular tubes with uniform wall temperature.’ AIChE Journal 20:340–46. doi:10.1002/aic.v20:2.
  • Mills, D. R., and G. L. Morrison. 2000. Compact linear fresnel reflector solar thermal power plants. Journal of Solar Energy 68 (3):263–83. doi:10.1016/S0038-092X(99)00068-7.
  • Mohamad, A., J. Orfi, and H. Alansary. 2014. Heat losses from parabolic trough solar collectors. International Journal of Energy Research 38 (1):20–28. doi:10.1002/er.3010.
  • Naeeni, N., and M. Yaghoubi. 2007. Analysis of wind flow around a parabolic collector heat transfer from receiver tube. Journal of Renewable Energy 32 (11):1259–72. doi:10.1016/j.renene.2006.06.005.
  • Naik, B. A. K., and A. V. Vinod. 2018. Heat transfer enhancement using non-newtonian nano fluids in a shell and helical coil heat exchanger. Experimental Thermal and Fluid Science 90. April 2017 Elsevier132–42. doi: 10.1016/j.expthermflusci.2017.09.013
  • Nakai, S., and T. Okazaki. 1975. Heat transfer from a horizontal circular wire at small reynolds and grashof Numbers-I pure convection. International Journal of Heat and Mass Transfer 18:387–96. doi:10.1016/0017-9310(75)90028-9.
  • Price, H. 2001. “Concentrated Solar Power Use in Africa.” NREL/TP. Golden, CO, National Renewable Energy Laboratory.
  • Price, H., E. Lü, D. Kearney, E. Zarza, G. Cohen, R. Gee, and R. Mahoney. 2002. Advances in parabolic trough solar power technology. Journal of Solar Energy Engineering 124 (2):109–25. doi:10.1115/1.1467922͔.
  • Purandare, P. S., M. M. Lele, and R. Gupta. 2012. Parametric analysis of helical coil heat exchanger abstract. International Journal of Engineering Research & Technology 1 (8):1–5.
  • Qu, M., D. H. Archer, and S. V. Masson. 2006. “A linear parabolic trough solar collector performance model.” Renewable Energy Resources and a Greener Future 5 (4):262–63.
  • Ratzel, A., C. Hickox, and D. Gartling. 1979. Techniques for reducing thermal conduction and natural convection heat losses in annular receiver geometries. Journal of Heat Transfer 101 (2):108–13. doi:10.1115/1.3450899.
  • Rogers, G. F. C., and Y. R. Mayhew. 1964. ‘Heat transfer and pressure loss in helically coiled tubes with turbulent flow.’ International Journal of Heat and Mass Transfer 7:1207–16. doi:10.1016/0017-9310(64)90062-6.
  • Rolim, M. M., N. Fraidenraich, and C. Tiba. 2009. Analytic modeling of a solar power plant with parabolic linear collectors. Solar Energy 83 (1):126–33. doi:10.1016/j.solener.2008.07.018.
  • Romero, M., M. J. Marcos, F. Baonzas, and V. Fernandez. 1999. Power from solar tower systems: A MIUS approach. Proceding ISES Solar World Congress, Jerusalem 286–95. Elsevier
  • Rongrong, Z., Y. Yongping, Y. Qin, and Z. Yong. 2013. Modeling and characteristic analysis of a solar parabolic trough system: Thermal oil as the heat transfer fluid. Journal of Renewable Energy 2013:1–8. doi:10.1155/2013/389514.
  • Salimpour, M. R. 2009. Heat transfer coefficients of shell and coiled tube heat exchangers. Experimental Thermal and Fluid Science 33 (2):203–07. doi:10.1016/j.expthermflusci.2008.07.015.
  • Schramek, P., and D. R. Mills 2000. “Potential of the heliostat field of a multi tower solar array.” Proc. the 10th Solar PACES International Symposium on Solar Thermal Concentrating Technologies. Sydney, 157–63. Australia
  • Srinivas, T., and A. Venu Vinod. 2013. Performance of an agitated helical coil heat exchanger using Al 2 O 3/water nanofluid. Experimental Thermal and Fluid Science 51(2):77–83. Elsevier Inc. doi:10.1016/j.expthermflusci.2013.07.003.
  • Touloukian, Y. S., and D. P. DeWitt, eds. 1972. Radiative properties, nonmetalic solids. Thermophysical properties of matter. Vol. 8. New York, NY: Plenum Publishing.
  • Wu, Z., D. Lei, G. Yuan, J. Shao, Y. Zhang, and Z. Wang. 2014a. Structural reliability analysis of parabolic trough receivers. Applied Energy 123:232–41. doi:10.1016/j.apenergy.2014.02.068.
  • Wu, Z., L. Shidong, G. Yuan, D. Lei, and Z. Wang. 2014b. Three-Dimensional numerical study of heat transfer characteristics of parabolic trough receiver. Applied Energy 113 (February):902–11. doi:10.1016/j.apenergy.2013.07.050.
  • Xin, R. C., and M. A. Ebadian. 1997. ‘The effects of prandtl numbers on local and average convective heat transfer characteristic in helical pipes.’ Journal of Heat Transfer 119:467–73. doi:10.1115/1.2824120.
  • Xiong, Y., W. Yuting, M. Chongfang, M. K. Traore, and Y. Zhang. 2010. Numerical investigation of thermal performance of heat loss of parabolic trough receiver. Science China Technological Sciences 53 (2):444–52. doi:10.1007/s11431-009-0279-x.
  • Zhu, H., H. Wang, and G. Kou. 2014. Experimental study on the heat transfer enhancement by dean vortices in spiral tubes. International Journal of Energy and Environment 5 (3):317–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.