193
Views
15
CrossRef citations to date
0
Altmetric
Articles

Effect of circular inside conical ring obstacles on heat transfer and friction characteristics of round jets impingement solar air rectangular passage

, , , , &
Pages 1091-1104 | Received 02 Jun 2018, Accepted 06 Aug 2019, Published online: 09 Sep 2019

References

  • Afroz, F., and M. A. R. Sharif. 2013. Numerical study of heat transfer from an isothermally heated flat wall due to turbulent twin oblique confined slot-jet impingement. International Journal of Thermal Sciences 74:1–13. doi:10.1016/j.ijthermalsci.2013.07.004.
  • Alam, T., and M.-H. Kim. 2017. Heat transfer enhancement in solar air heater conduit with conical protrusion roughness obstacles. Applied Thermal Engineering 126:458–69. doi:10.1016/j.applthermaleng.2017.07.181.
  • Alam, T., R. P. Saini, and J. S. Saini. 2014. Effect of circularity of perforation holes in V-shaped blockages on heat transfer and friction characteristics of rectangular solar air heater conduit. Energy Conversion and Management 86:952–63. doi:10.1016/j.enconman.2014.06.050.
  • Bekele, A., M. Mishra, and S. Dutta. 2014. Performance characteristics of solar air heater with wall mounted obstacles. Energy Conversion and Management 85:603–11. doi:10.1016/j.enconman.2014.04.079.
  • Belusko, M., W. Saman, and F. Bruno. 2008. Performance of jet impingement in unglazed air collectors. Solar Energy 82 (5):389–98. doi:10.1016/j.solener.2007.10.005.
  • Borjian, E., T. Yousefi, and M. Ashjaee. 2015. Optical interferometry to investigate the heat transfer from a vertical cone under air jet impingement. Optics and Lasers in Engineering 67:205–11. doi:10.1016/j.optlaseng.2014.12.002.
  • Caggese, O., G. Gnaegi, G. Hannema, A. Terzis, and P. Ott. 2013. Experimental and numerical investigation of a fully confined impingement round jet. International Journal of Heat and Mass Transfer 65:873–82. doi:10.1016/j.ijheatmasstransfer.2013.06.043.
  • Chauhan, R., and N. S. Thakur. 2013. Heat transfer and friction factor correlations for impinging jet solar air heater. Experimental Thermal and Fluid Science 44:760–67. doi:10.1016/j.expthermflusci.2012.09.019.
  • Chauhan, R., and N. S. Thakur. 2014. Investigation of the thermohydraulic performance of impinging jet solar air heater. Energy 68:255–61. doi:10.1016/j.energy.2014.02.059.
  • Chauhan, R., N. S. Thakur, T. Singh, and M. Sethi. 2018. Exergy based modeling and optimization of solar thermal collector provided with impinging air jets. Journal Of King Saud University - Engineering Sciences 30:355-62. doi: 10.1016/j.jksues.2016.07.003.
  • Chauhan, R., T. Singh, N. S. Thakur, and A. Patnaik. 2016a. Optimization of parameters in solar thermal collector provided with impinging air jets based upon preference selection index method. Renewable Energy 99:118–26. doi:10.1016/j.renene.2016.06.046.
  • Chen, Y.-J., -Y.-Y. Li, and Z.-H. Liu. 2015. Experimental study on the stagnation line heat transfer characteristics with high-velocity free slot jet impingement boiling. International Journal of Heat and Mass Transfer 91:282–92. doi:10.1016/j.ijheatmasstransfer.2015.07.114.
  • Choi, G., B. S. Kim, H. Lee, S. Shin, and H. H. Cho. 2014. Jet impingement in a crossflow configuration: Convective boiling and local heat transfer characteristics. International Journal of Heat and Fluid Flow 50:378–85. doi:10.1016/j.ijheatfluidflow.2014.09.010.
  • Choo, K., B. K. Friedrich, A. W. Glaspell, and K. A. Schilling. 2016. The influence of nozzle-to-plate spacing on heat transfer and fluid flow of submerged jet impingement. International Journal of Heat and Mass Transfer 97:66–69. doi:10.1016/j.ijheatmasstransfer.2016.01.060.
  • De Bonis, M. V., and G. Ruocco. 2014. Conjugate heat and mass transfer by jet impingement over a moist protrusion. International Journal of Heat and Mass Transfer 70:192–201. doi:10.1016/j.ijheatmasstransfer.2013.11.014.
  • Deo, N. S., S. Chander, and J. S. Saini. 2016. Performance analysis of solar air heater conduit roughened with multigap V-down obstacles combined with staggered obstacles. Renewable Energy 91:484–500. doi:10.1016/j.renene.2016.01.067.
  • Gawande, V. B., A. S. Dhoble, D. B. Zodpe, and S. Chamoli. 2016. Experimental and CFD investigation of convection heat transfer in solar air heater with reverse L-shaped obstacles. Solar Energy 131:275–95. doi:10.1016/j.solener.2016.02.040.
  • Gorman, J. M., E. M. Sparrow, and J. P. Abraham. 2014. Slot jet impingement heat transfer in the presence of jet-axis switching. International Journal of Heat and Mass Transfer 78:50–57. doi:10.1016/j.ijheatmasstransfer.2014.06.041.
  • Hans, V. S., R. P. Saini, and J. S. Saini. 2009. Performance of artificially roughened solar air heaters—A review. Renewable and Sustainable Energy Reviews 13 (8):1854–69. doi:10.1016/j.rser.2009.01.030.
  • Hoberg, T. B., A. J. Onstad, and J. K. Eaton. 2010. Heat transfer measurements for jet impingement arrays with local extraction. International Journal of Heat and Fluid Flow 31 (3):460–67. doi:10.1016/j.ijheatfluidflow.2010.01.009.
  • Hong, F. J., C. Y. Zhang, W. He, P. Cheng, and G. Chen. 2014. Confined jet array impingement boiling of subcooled aqueous ethylene glycol solution. International Communications in Heat and Mass Transfer 56:165–73. doi:10.1016/j.icheatmasstransfer.2014.06.013.
  • Kannan, B. T., and S. Sundararaj. 2015. Steady state jet impingement heat transfer from axisymmetric plates with and without grooves. Procedia Engineering 127:25–32. doi:10.1016/j.proeng.2015.11.320.
  • Kartaev, Е. V., V. А. Emelkin, M. G. Ktalkherman, S. М. Aulchenko, S. P. Vashenko, and V. I. Kuzmin. 2015. Formation of counter flow jet resulting from impingement of multiple jets radially injected in a crossflow. Experimental Thermal and Fluid Science 68:310–21. doi:10.1016/j.expthermflusci.2015.05.009.
  • Kline, S. J., and F. A. McClintock. 1953. Descobstacleing uncertainties in single-sample experiments. Mechanical Engineers 75:3–8.
  • Kumar, A. 2014. Analysis of heat transfer and fluid flow in different shaped roughness elements on the heated wall solar air heater conduit. Energy Procedia 57:2102–11. doi:10.1016/j.egypro.2014.10.176.
  • Kumar, A., and M.-H. Kim. 2014. Numerical optimization of solar air heaters having different types of roughness shapes on the heated plate – Technical note. Energy 72:731–38. doi:10.1016/j.energy.2014.05.100.
  • Kumar, A., R. P. Saini, and J. S. Saini. 2012. Heat and fluid flow characteristics of roughened solar air heater conduits – A review. Renewable Energy 47:77–94. doi:10.1016/j.renene.2012.04.001.
  • Kumar, R., A. Kumar, R. Chauhan, and M. Sethi. 2016. Heat transfer enhancement in solar air channel with broken multiple V-type baffle. Case Studies in Thermal Engineering 8:187–97. doi:10.1016/j.csite.2016.07.001.
  • Lee, J., Z. Ren, P. Ligrani, D. H. Lee, M. D. Fox, and H.-K. Moon. 2014. Cross-flow effects on impingement array heat transfer with varying jet-to-target plate distance and hole spacing. International Journal of Heat and Mass Transfer 75:534–44. doi:10.1016/j.ijheatmasstransfer.2014.03.040.
  • Lee, J., Z. Ren, P. Ligrani, M. D. Fox, and H.-K. Moon. 2015. Crossflows from jet array impingement cooling: hole spacing, target plate distance, reynolds number effects. International Journal of Thermal Sciences 88:7–18. doi:10.1016/j.ijthermalsci.2014.09.003.
  • Lewis, M. J. 1975. Optimising the thermohydraulic performance of rough walls. International Journal of Heat and Mass Transfer 18 (11):1243–48. doi:10.1016/0017-9310(75)90232-X.
  • Nadda, R., A. Kumar, and R. Maithani. 2017. Developing heat transfer and friction loss in an impingement round jetss solar air heater with multiple arc protrusion obstacles. Solar Energy 158:117–31. doi:10.1016/j.solener.2017.09.042.
  • Ndao, S., Y. Peles, and M. K. Jensen. 2012. Experimental investigation of flow boiling heat transfer of jet impingement on smooth and micro structured walls. International Journal of Heat and Mass Transfer 55 (19–20):5093–101. doi:10.1016/j.ijheatmasstransfer.2012.05.009.
  • Pakhomov, M. A., and V. I. Terekhov. 2015. Numerical study of fluid flow and heat transfer characteristics in an intermittent turbulent impinging round jet. International Journal of Thermal Sciences 87:85–93. doi:10.1016/j.ijthermalsci.2014.08.007.
  • Pandey, N. K., V. K. Bajpai, and Varun. 2016. Experimental investigation of heat transfer augmentation using multiple arcs with gap on heated wall of solar air heater. Solar Energy 134:314–26. doi:10.1016/j.solener.2016.05.007.
  • Qiu, L., S. Dubey, F. H. Choo, and F. Duan. 2015. Effect of conjugation on jet impingement boiling heat transfer. International Journal of Heat and Mass Transfer 91:584–93. doi:10.1016/j.ijheatmasstransfer.2015.07.121.
  • Ravi, R. K., and R. P. Saini. 2016. Experimental investigation on performance of a double pass artificial roughened solar air heater conduit having roughness elements of the combination of discrete multi V shaped and staggered obstacles. Energy 116:507–16. doi:10.1016/j.energy.2016.09.138.
  • Ravi, R. K., and R. P. Saini. 2018. Nusselt number and friction factor correlations for forced convective type counter flow solar air heater having discrete multi V shaped and staggered obstacle roughness on both sides of the heated wall. Applied Thermal Engineering 129:735–46. doi:10.1016/j.applthermaleng.2017.10.080.
  • Sawhney, J. S., R. Maithani, and S. Chamoli. 2017. Experimental investigation of heat transfer and friction factor characteristics of solar air heater using wavy delta winglets. Applied Thermal Engineering 117:740–51. doi:10.1016/j.applthermaleng.2017.01.113.
  • Taghinia, J., M. Rahman, and T. Siikonen. 2015. Heat transfer and flow analysis of jet impingement on concave walls. Applied Thermal Engineering 84:448–59. doi:10.1016/j.applthermaleng.2015.03.064.
  • Tan, L., J.-Z. Zhang, and H.-S. Xu. 2014. Jet impingement on a obstacle-roughened wall inside semi-confined channel. International Journal of Thermal Sciences 86:210–18. doi:10.1016/j.ijthermalsci.2014.06.037.
  • Tan, X.-M., J.-Z. Zhang, S. Yong, and G.-N. Xie. 2015. An experimental investigation on comparison of synthetic and continuous jets impingement heat transfer. International Journal of Heat and Mass Transfer 90:227–38. doi:10.1016/j.ijheatmasstransfer.2015.06.065.
  • Varol, Y., D. E. Alnak, H. F. Oztop, and K. Al-Salem. 2012. Numerical analysis of heat transfer due to slot jets impingement onto two cylinders with different diameters. International Communications in Heat and Mass Transfer 39 (5):726–35. doi:10.1016/j.icheatmasstransfer.2012.03.006.
  • Wan, C., Y. Rao, and P. Chen. 2015. Numerical predictions of jet impingement heat transfer on square pin-fin roughened plates. Applied Thermal Engineering 80:301–09. doi:10.1016/j.applthermaleng.2015.01.053.
  • Wang, C., L. Wang, and B. Sundén. 2015. A novel control of jet impingement heat transfer in cross-flow by a vortex generator pair. International Journal of Heat and Mass Transfer 88:82–90. doi:10.1016/j.ijheatmasstransfer.2015.04.056.
  • Wang, L., B. Sundén, A. Borg, and H. Abrahamsson. 2011. Control of jet impingement heat transfer in crossflow by using a obstacle. International Journal of Heat and Mass Transfer 54 (19–20):4157–66. doi:10.1016/j.ijheatmasstransfer.2011.06.004.
  • Wong, K.-C. 2012. Thermal analysis of a metal foam subject to jet impingement. International Communications in Heat and Mass Transfer 39 (7):960–65. doi:10.1016/j.icheatmasstransfer.2012.05.021.
  • Xing, Y., S. Spring, and B. Weigand. 2011. Experimental and numerical investigation of impingement heat transfer on a flat and micro-obstacle roughened plate with different crossflow schemes. International Journal of Thermal Sciences 50 (7):1293–307. doi:10.1016/j.ijthermalsci.2010.11.008.
  • Yang, L., Y. Li, P. M. Ligrani, J. Ren, and H. Jiang. 2015. Unsteady heat transfer and flow structure of a row of laminar impingement round jetss, including vortex development. International Journal of Heat and Mass Transfer 88:149–64. doi:10.1016/j.ijheatmasstransfer.2015.04.051.
  • Yu, Y.-Z., J.-Z. Zhang, and Y. Shan. 2015. Convective heat transfer of a row of air jets impingement excited by triangular tabs in a confined crossflow channel. International Journal of Heat and Mass Transfer 80:126–38. doi:10.1016/j.ijheatmasstransfer.2014.08.066.
  • Zhang, P., G. H. Xu, X. Fu, and C. R. Li. 2011. Confined jet impingement of liquid nitrogen onto different heat transfer walls. Cryogenics 51 (6):300–08. doi:10.1016/j.cryogenics.2010.06.018.
  • Zhao, Z., Y. Peles, and M. K. Jensen. 2013. Water jet impingement boiling from structured-porous walls. International Journal of Heat and Mass Transfer 63:445–53. doi:10.1016/j.ijheatmasstransfer.2013.03.085.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.