104
Views
12
CrossRef citations to date
0
Altmetric
Articles

Experimental study of a solar air heater by adding an arrangement of transverse rectangular baffles perpendicular to the air stream

, , &
Pages 1264-1277 | Received 02 Feb 2018, Accepted 15 Sep 2019, Published online: 02 Oct 2019

References

  • Abbassi, F., and L. Dehmani. 2015. Experimental and numerical study on thermal performance of an unvented Trombe wall associated with internal thermal fins. Energy and Buildings 105:119–28. doi:10.1016/j.enbuild.2015.07.042.
  • Ahmed-Zaïd, A., A. Moulla, M. S. Hantala, and J. Y. Desmons. 2001. Amélioration des Performances des Capteurs Solaires Plans à Air: Application au Séchage de l’Oignon Jaune et du Hareng. Revue Des Energies Renouvelables 4:69–78.
  • Amit, B., G. Abhishek, K. Manoj, K. M. Chidanand, and C. Sunil. 2018. Thermal performance intensification of a circular heat exchanger tube integrated with compound circular ring - metal wire net inserts. Chemical Engineering and Processing - Process Intensification 124:50–70. doi:10.1016/j.cep.2017.12.002.
  • Aoues, K., N. Moummi, M. Zellouf, A. Moummi, A. Labed, and A. Benchabane. 2009. Amélioration des Performances Thermiques d’un Capteur Solaire Plan à Air - Etude Expérimentale dans la Région de Biskra. Revue Des Energies Renouvelables 12:237–48.
  • Bahria, S., and M. Amirat. 2013. Influence de l’adjonction des chicanes longitudinales sur les performances d’un capteur solaire plan à air. Revue Des Energies Renouvelables 16:51–63.
  • Chabane, F., and F. Adouane. 2018a. Experimental investigation of the solar drying and solar collector design for drying agricultural product (mint). Chemical Engineering Transactions 71:1387–92.
  • Chabane, F., F. Adouane, N. Moummi, A. Brima, and D. Bensahal. 2019. Mathematical modeling of drying of mint in a forced convective dryer based on important parameters. International Journal of Heat and Technologies 37:537–44. doi:10.18280/ijht.370222.
  • Chabane, F., N. Hatraf, and N. Moummi. 2014. Experimental study of heat transfer coefficient with rectangular baffle fin of solar air heater. Frontiers in Energy 8:160–72. doi:10.1007/s11708-014-0321-y.
  • Chabane, F., Z. Khadraoui, and D. Bensahal. 2018b. Prediction of Global Solar Radiation on the Horizontal Area with the Effect of Ambient Temperature Part: II. TECNICA ITALIANA-Italian Journal of Engineering Science 63:73–77. doi:10.18280/ti-ijes.630110.
  • Chabane, F., N. Moummi, and S. Benramache. 2013. Experimental analysis on thermal performance of a solar air collector with longitudinal fins in a region of Biskra, Algeria. Journal of Power Technologies 93 (1):52–58.
  • Chabane, F., N. Moummi, and S. Benramache. 2014a. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater. Journal of Advanced Research 5:183–92. doi:10.1016/j.jare.2013.03.004.
  • Chabane, F., N. Moummi, and S. Benramache. 2014b. Heat transfer and energy analysis of a solar air collector with smooth plate. The European Physical Journal Applied Physics 66 (1):10901. doi:10.1051/epjap/2014130405.
  • Chabane, F., N. Moummi, S. Benramache, D. Bensahal, and O. Belahssen. 2013a. Collector efficiency by single pass of solar air heaters with and without using fins. Engineering Journal 17:44–53. doi:10.4186/ej.2013.17.3.43.
  • Chabane, F., N. Moummi, D. Bensahal, and A. Brima. 2014. Heat transfer coefficient and thermal losses of solar collector and Nusselt number correlation for rectangular solar air heater duct with longitudinal fins hold under the absorber plate. Applied Solar Energy 50:19–26. doi:10.3103/S0003701X14010046.
  • Chabane, F., N. Moummi, and A. Brima. 2018c. Experimental study of thermal efficiency of a solar air heater with an irregularity element on absorber plate. International Journal of Heat and Technology 36:855–60. doi:10.18280/ijht.
  • Chabane, F., N. Moummi, A. Brima, and S. Benramache. 2013b. Thermal efficiency analysis of a single-flow solar air heater with different mass flow rates in a smooth plate. Frontiers in Heat and Mass Transfer 4:1. doi:10.5098/hmt.v4.1.3006.
  • Chabane, F., N. Moummi, A. Brima, and A. Moummi. 2016. Prediction of the theoretical and semi-empirical model of ambient temperature. Frontiers in Energy 10:268–76. doi:10.1007/s11708-016-0413-y.
  • Chabane, F., and E. Sekseff. 2018d. Solar air collectors with doubles glazed by different distances in support of mass flow. Instrumentation, Mesure, Metrologie 17:37–53. doi:10.3166/i2m.17.37-53.
  • Chabane, F., E. Sekseff, N. Moummi, and A. Brima. 2018e. Experimental study of a solar air collector with doubles glazed. Iranian Journal of Energy and Environment 9:163–67.
  • El-Sebaii, A. A., S. Aboul-Enein, M. R. I. Ramadan, S. M. Shalaby, and B. M. Moharram. 2011. Investigation of thermal performance of-double pass- flat and v- corrugated plate solar air heaters. Energy 36:1076–86. doi:10.1016/j.energy.2010.11.042.
  • Enibe, S. O. 2002. Performance of a natural circulation solar air heating system with phase change material energy storage. Renewable Energy 27:69–86. doi:10.1016/S0960-1481(01)00173-2.
  • Gao, W., W. Lin, T. Liu, and C. Xia. 2007. Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters. Applied Energy 84:425–41. doi:10.1016/j.apenergy.2006.02.005.
  • Karim, M. A., and M. N. A. Hawlader. 2004. Development of solar air collectors for drying applications. Energy Conversation and Management 45:329–44. doi:10.1016/S0196-8904(03)00158-4.
  • Kiatsiriroat, T., W. Jiatrakul, and A. Nuntaphan. 2007. experimental study on heat transfer enhancement in solar air heater by electric field. Heat Transfer Engineering 28:38–41. doi:10.1080/01457630600985642.
  • Klein, S. A. 1975. Calculation of flat-plate collector loss coefficients. Solar Energy 17 (1):79–80. doi:10.1016/0038-092X(75)90020-1.
  • Koyuncu, T. 2006. Performance of various designs of solar air heaters for crop drying applications. Renewable Energy 31:1073–1088.
  • Kurtbaş, I., and A. Durmus. 2004. Efficiency and exergy analysis of a new novel solar air heater. Renewable Energy 29:1489–501. doi:10.1016/j.renene.2004.01.006.
  • McAdams, W. H. 1954. Heat Transmission. New York: McGraw-Hill.
  • Moummi, N., S. Youcef-Ali, A. Moummi, and J. Y. Desmons. 2004. Energy analysis of a solar air collector with rows of fins. Renewable Energy 29:2053–64. doi:10.1016/j.renene.2003.11.006.
  • Othman, M. Y., B. Yatim, K. Sopian, and M. N. A. Bakar. 2006. Double pass photovoltaic-thermal solar collector. Journal of Energy Engineering 132 (3):121–26. doi:10.1061/(ASCE)0733-9402(2006)132:3(121).
  • Piyush, A., G. Abhishek, K. Anshul, K. Manoj, and C. Sunil. 2018. Performance assessment of heat transfer and friction characteristics of a packed bed heat storage system embedded with internal grooved cylinders. Solar Energy 161:148–58. doi:10.1016/j.solener.2017.12.044.
  • Priyam, A., and P. Chand. 2016. Thermal and thermo-hydraulic performance of wavy finned absorber solar air heater. Solar Energy 130:250–59. doi:10.1016/j.solener.2016.02.030.
  • Rajaseenivasan, T., and K. Srithar. 2016. Performance investigation on solar still with circular and square fins in basin with CO2 mitigation and economic analysis. Desalination 380:66–74. doi:10.1016/j.desal.2015.11.025.
  • Sunil, C. 2015. Hybrid FAHP (fuzzy analytical hierarchy process)-FTOPSIS (fuzz technique for order preference by similarity of an ideal solution) approach for performance evaluation of the V down perforated baffle roughened rectangular channel. Energy 84:432–42. doi:10.1016/j.energy.2015.03.007.
  • Sunil, C., Y. Peng, and Y. Shimin. 2017a. Multi-objective shape optimization of a heat exchanger tube fitted with compound inserts. Applied Thermal Engineering 117:708–24. doi:10.1016/j.applthermaleng.2017.02.047.
  • Sunil, C., L. Ruixin, X. Dehao, and Y. Peng. 2018a. Thermal performance improvement of a solar air heater fitted with winglet vortex generators. Solar Energy 159:966–83. doi:10.1016/j.solener.2017.11.046.
  • Sunil, C., L. Ruixin, X. Jin, and Y. Peng. 2018b. Numerical study on flow structure and heat transfer in a circular tube integrated with novel anchor shaped inserts. Applied Thermal Engineering 135:304–24. doi:10.1016/j.applthermaleng.2018.02.052.
  • Sunil, C., L. Ruixin, and Y. Peng. 2017. Thermal characteristic of a turbulent flow through a circular tube fitted with perforated vortex generator inserts. Applied Thermal Engineering 121:1117–34. doi:10.1016/j.applthermaleng.2017.03.145.
  • Togrul, I. T., D. Pehlivan, and C. Akosman. 2004. Development and testing of a solar air-heater with conical concentrator. Renewable Energy 29:263–75. doi:10.1016/S0960-1481(03)00168-X.
  • Vipin, B. G., A. S. Dhoble, D. B. Zodpe, and C. Sunil. 2016. Experimental and CFD–based thermal performance prediction of solar air heater provided with chamfered square rib as artificial roughness. Journal of the Brazilian Society of Mechanical Sciences and Engineering 38:643–63. doi:10.1007/s40430-015-0402-9.
  • Vyas, S., and S. Punjabi. 2015. Experimental study of thermal performance enhancement of a flat plate solar air heater using optical measurement technique. International Journal of Recent Advances in Mechanical Engineering (IJMECH) 4 (3): 81-97.
  • Yeh, H. M. 2012. Upward-type flat-plate solar air heaters attached with fins and operated by an internal recycling for improved performance. Journal of the Taiwan Institute of Chemical Engineers 43:235–40. doi:10.1016/j.jtice.2011.10.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.