105
Views
1
CrossRef citations to date
0
Altmetric
Miscellany

Energy and exergy analysis of a combined Brayton/Brayton power cycle with humidification

&
Pages 149-156 | Received 12 Sep 2019, Accepted 04 Dec 2019, Published online: 08 Jan 2020

References

  • Agnew, B., A. Anderson, I. Potts, T. H. Frost, and M. A. Alabdoadaim. 2003. Simulation of combined brayton and inverse Brayton cycles. Applied Thermal Engineering 23:953–63. doi:10.1016/S1359-4311(03)00019-X.
  • Bhargava, R., and A. Peretto. 2002. A unique approach for thermoeconomic optimization of an intercooled, reheat, and recuperated gas turbine for cogeneration applications. Journal of Engineering for Gas Turbines and Power 124:881–91. doi:10.1115/1.1476928.
  • Bolland, O., M. Forde, and B. Hande. 1996. Air bottoming cycle : Use of gas turbine waste heat for power generation. Journal of Engineering for Gas Turbines and Power 118 (2):359–68. doi:10.1115/1.2816597.
  • Entezari, A., A. Manizadeh, and R. Ahmadi. 2018. Energetical, exergetical and economical optimization analysis of combined power generation system of gas turbine and stirling engine. Energy Conversion and Management 159:189–203. doi:10.1016/j.enconman.2018.01.012.
  • Fallah, M., H. Siyahi, R. A. Ghiasi, S. M. S. Mahmoudi, M. Yari, and M. A. Rosen. 2016. Comparison of different gas turbine cycles and advanced exergy analysis of the most effective. Energy 116:701–15. doi:10.1016/j.energy.2016.10.009.
  • Ghazikhani, M., I. Khazaee, and E. Abdekhodaie. 2014. Exergy analysis of gas turbine with air bottoming cycle. Energy 72:599–607. doi:10.1016/j.energy.2014.05.085.
  • Goodarzi, M. 2016. Comparative energy analysis on a new regenerative brayton cycle. Energy Conversion and Management 120:25–31. doi:10.1016/j.enconman.2016.04.079.
  • Haseli, Y. 2016. Efficiency of irreversible brayton cycles at minimum entropy generation. Applied Mathematical Modelling 40:8366–76. doi:10.1016/j.apm.2016.04.031.
  • Ibrahim, T. K., F. Basrawi, O. I. Awad, A. N. Abdullah, G. Najafi, R. Mamat, and F. Y. Hagos. 2017. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering 115:977–85. doi:10.1016/j.applthermaleng.2017.01.032.
  • Jenkins, P., M. Cerza, and M. M. Al Saaid. 2014. Analysis of using the M-Cycle regenerative-humidification process on a gas turbine. Journal of Energy and Power Engineering 8:1824–37. doi:10.17265/1934-8975/2014.11.002.
  • Jesionek, K., A. Chrzczonowski, P. Ziolkowski, and J. Badur. 2012. Power enhancement of the Brayton cycle by steam utilization. Archives of Thermodynamics 33 (3):39–50. doi:10.2478/v10173-012-0016-x.
  • Jonsson, M., and J. Yan. 2005. Humidified gas turbines — a review of proposed and implemented cycles. Energy 30:1013–78. doi:10.1016/j.energy.2004.08.005.
  • Kayadelen, H. K., and Y. Ust. 2014. Performance and environment as objectives in multi-criterion optimization of steam injected gas turbine cycles. Applied Thermal Engineering 71:184–96. doi:10.1016/j.applthermaleng.2014.06.052.
  • Kim, K. H., and H. J. Ko. 2013. Exergy analysis of wet-compression gas turbine cycle with recuperator and turbine blade cooling. Journal of Automation and Control Engineering 1 (2):140–43. doi:10.12720/joace.1.2.140-143.
  • BL McBride, MJ Zehe and S Gordon. 2002. NASA Glenn coefficients for calculating thermodynamic properties of individual species. NASA Glenn Research Centre, Cleveland, OH, Report no. NASA/TP-2002-211556.
  • Mossi Idrissa, A. K., and K. Goni Boulama. 2017. Investigation of the performance of a combined brayton/brayton cycle with humidification. Energy 141:492–505. doi:10.1016/j.energy.2017.09.097.
  • Mossi Idrissa, A. K., and K. Goni Boulama. 2019. Advanced exergy analysis of a combined Brayton/Brayton power cycle. Energy 166:724–37. doi:10.1016/j.energy.2018.10.117.
  • Nami, H., and E. Akrami. 2017. Analysis of a gas turbine based hybrid system by utilizing energy, exergy and exergoeconomic methodologies for steam, power and hydrogen production. Energy Conversion and Management 143:326–37. doi:10.1016/j.enconman.2017.04.020.
  • Omar, A., M. Saghafifar, and M. Gadalla. 2016. Thermo-economic analysis of air saturator integration in conventional combined power cycles. Applied Thermal Engineering 107:1104–22. doi:10.1016/j.applthermaleng.2016.06.181.
  • Saghafifar, M., and M. Gadalla. 2015a. Analysis of maisotsenko open gas turbine power cycle with a detailed air saturator Model. Applied Energy 149:338–53. doi:10.1016/j.apenergy.2015.03.099.
  • Saghafifar, M., and M. Gadalla. 2015b. Analysis of maisotsenko open gas turbine bottoming cycle. Applied Thermal Engineering 82:351–59. doi:10.1016/j.applthermaleng.2015.02.032.
  • Sahu, M. K., and Sanjay. 2017. Comparative exergoeconomic analysis of basic and reheat gas turbine with air film blade cooling. Energy 132:160–70. doi:10.1016/j.energy.2017.05.025.
  • Szybist, J. P., K. Chakravathy, and C. S. Daw. 2012. Analysis of the impact of selected fuel thermochemical properties. Energy & Fuels 26:2798–810. doi:10.1021/ef2019879.
  • Tripathi, A., M. Dubey, H. Chandra, and A. Kumar. 2016. Thermodynamics performance analysis of reversible reheat Joule – Brayton cycle with cogeneration system. International Journal of Energy Engineering 6 (1A):1–6. doi:10.5923/s.ijee.201601.01.
  • Wagner, W., and A. Pruss. 1993. International equations for the saturation properties of ordinary water substance. revised according to the international temperature scale of 1990. Journal of Physical and Chemical Reference Data 22 (3):783–87. doi:10.1063/1.555926.
  • Wagner, W., J. R. Cooper, A. Dittmann, J. Kijima, H. J. Kretzschmar, A. Kruse, R. Mareš, K. Oguchi, H. Sato, and I. Stöcker, et al. 2000. The iapws industrial formulation 1997 for the thermodynamic properties of water and steam. Journal Of Engineering for Gas Turbines and Power 122:150–82. doi: 10.1115/1.483186.
  • Wu, C., L. Chen, and F. Sun. 1996. Performance of a regenerative brayton heat engine. Energy 21 (2):71–76. doi:10.1016/0360-5442(95)00097-6.
  • Zhang, W., L. Chen, and F. Sun. 2009. Power and efficiency optimization for combined brayton and inverse brayton cycles. Applied Thermal Engineering 29:2885–94. doi:10.1016/j.applthermaleng.2009.02.011.
  • Zheng, J., F. Sun, L. Chen, and C. Wu. 2001. Exergy Analysis for a Braysson Cycle. Exergy, an International Journal 1 (1):41–45. doi:10.1016/S1164-0235(01)00008-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.