290
Views
1
CrossRef citations to date
0
Altmetric
Articles

Investigation of three system shut-down strategies alongside optimization suggestion for proton exchange membrane fuel cells via in-situ measurements

, , , , , , , , , , & show all
Pages 157-170 | Received 15 Oct 2019, Accepted 03 Jan 2020, Published online: 08 Jan 2020

References

  • Alpaydin, G. U., Y. Devrim, and C. O. Colpan. 2019. Performance of an HT‐PEMFC having a catalyst with graphene and multiwalled carbon nanotube support. International journal of energy research 43:3578–89. doi:10.1002/er.4504.
  • Ball, M., and M. Weeda. 2015. The hydrogen economy–Vision or reality? International Journal of Hydrogen Energy 40:7903–19. doi:10.1016/j.ijhydene.2015.04.032.
  • Bauer, A., R. Hui, A. Ignaszak, J. Zhang, and D. J. Jones. 2012. Application of a composite structure of carbon nanoparticles and Nb–TiO2 nanofibers as electrocatalyst support for PEM fuel cells. Journal of Power Sources 210:15–20. doi:10.1016/j.jpowsour.2012.02.093.
  • Bo, K. H., P. Mandal, J. G. Oh, and S. Litster. 2016. On the impact of water activity on reversal tolerant fuel cell anode performance and durability. Journal of Power Sources 328:280–88. doi:10.1016/j.jpowsour.2016.07.002.
  • Chandesris, M., L. Guetaz, P. Schott, M. Scohy, and S. Escribano. 2018. Investigation of degradation heterogeneities in pemfc stack aged under reformate coupling in situ diagnosis, post-mortem ex situ analyses and multi-physic simulations. Journal of the Electrochemical Society 165:F3290–F306. doi:10.1149/2.0321806jes.
  • Chen, H., Z. Song, X. Zhao, T. Zhang, P. Pei, and C. Liang. 2018. A review of durability test protocols of the proton exchange membrane fuel cells for vehicle. Applied Energy 224:289–99. doi:10.1016/j.apenergy.2018.04.050.
  • Chen, H., X. Zhao, T. Zhang, and P. Pei. 2019. The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: A review. Energy Conversion and Management 182:282–98. doi:10.1016/j.enconman.2018.12.049.
  • Durst, J., A. Lamibrac, F. Charlot, J. Dillet, L. F. Castanheira, G. Maranzana, L. Dubau, F. Maillard, M. Chatenet, O. Lottin, et al. 2013. Degradation heterogeneities induced by repetitive start/stop events in proton exchange membrane fuel cell: Inlet vs. outlet and channel vs. land. Applied Catalysis B: Environmental 138:416–26. doi:10.1016/j.apcatb.2013.03.021.
  • Dyantyi, N., A. Parsons, P. Bujlo, and S. Pasupathi. 2019. Behavioural study of PEMFC during start-up/shutdown cycling for aeronautic applications. Materials for Renewable and Sustainable Energy 8 (1):1–8. doi:10.1007/s40243-019-0141-4.
  • Engl, T., L. Gubler, and T. J. Schmidt. 2015. Think different! Carbon corrosion mitigation strategy in high temperature PEFC: A rapid aging study. Journal of the Electrochemical Society 162:F291–F7. doi:10.1149/2.0681503jes.
  • Eom, K., G. Kim, E. Cho, J. H. Jang, H. J. Kim, S. J. Yoo, S.-K. Kim, B. K. Hong. 2012. Effects of Pt loading in the anode on the durability of a membrane–Electrode assembly for polymer electrolyte membrane fuel cells during startup/shutdown cycling. International Journal of Hydrogen Energy 37:18455–62. doi:10.1016/j.ijhydene.2012.09.077.
  • Ettingshausen, F., J. Kleemann, A. Marcu, G. Toth, H. Fuess, and C. Roth. 2011. Dissolution and migration of platinum in PEMFCs investigated for start/stop cycling and high potential degradation. Fuel Cells 11:238–45. doi:10.1002/fuce.201000051.
  • Ferreira-Aparicio, P., A. M. Chaparro, M. A. Folgado, J. J. Conde, E. Brightman, and G. Hinds. 2017. Degradation study by start-up/shut-down cycling of superhydrophobic electrosprayed catalyst layers using a localized reference electrode technique. ACS Applied Materials & Interfaces 9:10626–36. doi:10.1021/acsami.6b15581.
  • Hosseini, S. E., and M. A. Wahid. 2016. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews 57:850–66. doi:10.1016/j.rser.2015.12.112.
  • Hung, C.-Y., H.-S. Huang, S.-W. Tsai, and Y.-S. Chen. 2016. A purge strategy for proton exchange membrane fuel cells under varying-load operations. International Journal of Hydrogen Energy 41:12369–76. doi:10.1016/j.ijhydene.2016.05.132.
  • Jang, J., M. Sharma, D. Choi, Y. S. Kang, Y. Kim, J. Min, H. Sung, N. Jung, S. J. Yoo. 2019. Boosting fuel cell durability under shut-down/start-up conditions using a hydrogen oxidation-selective metal-carbon hybrid core-shell catalyst. ACS Applied Materials & Interfaces 11:27735–42. doi:10.1021/acsami.9b06309.
  • Jeon, Y., J.-I. Park, J. Ok, A. Dorjgotov, H.-J. Kim, H. Kim, C. Lee, S. Park, Y.-G. Shul. 2016. Enhancement of catalytic durability through nitrogen-doping treatment on the CNF-derivatized ACF support for high temperature PEMFC. International Journal of Hydrogen Energy 41:6864–76. doi:10.1016/j.ijhydene.2016.03.021.
  • Jia, F., L. Guo, and H. Liu. 2017. Mitigation strategies for hydrogen starvation under dynamic loading in proton exchange membrane fuel cells. Energy Conversion and Management 139:175–81. doi:10.1016/j.enconman.2017.02.051.
  • Jo, Y. Y., E. A. Cho, J. H. Kim, T. H. Lim, I. H. Oh, J. H. Jang, H.-J. Kim. 2010. Effects of a hydrogen and air supply procedure on the performance degradation of PEMFCs. International Journal of Hydrogen Energy 35:13118–24. doi:10.1016/j.ijhydene.2010.04.072.
  • Kim, J., Y.-S. Chun, S.-K. Lee, and D.-S. Lim. 2015. Improved electrode durability using a boron-doped diamond catalyst support for proton exchange membrane fuel cells. RSC Advances 5:1103–08. doi:10.1039/c4ra13389g.
  • Lee, S.-Y., E. Cho, J.-H. Lee, H.-J. Kim, T.-H. Lim, I.-H. Oh, J. Won. 2007. Effects of purging on the degradation of PEMFCs operating with repetitive on/off cycles. Journal of the Electrochemical Society 154:B194–B200. doi:10.1149/1.2403083.
  • Liang, D., Q. Shen, M. Hou, Z. Shao, and B. Yi. 2009. Study of the cell reversal process of large area proton exchange membrane fuel cells under fuel starvation. Journal of Power Sources 194:847–53. doi:10.1016/j.jpowsour.2009.06.059.
  • Lin, R., X. Cui, J. Shan, L. Técher, F. Xiong, and Q. Zhang. 2015. Investigating the effect of start-up and shut-down cycles on the performance of the proton exchange membrane fuel cell by segmented cell technology. International Journal of Hydrogen Energy 40:14952–62. doi:10.1016/j.ijhydene.2015.09.042.
  • Lin, R., S. Xia, Q. Zhang, and B. Dutruel. 2018. Comparison between the constant dummy load and step load shut-down strategy for PEMFCs. Fuel Cells 18:306–14. doi:10.1002/fuce.201700095.
  • Linse, N., G. G. Scherer, A. Wokaun, and L. Gubler. 2012. Quantitative analysis of carbon corrosion during fuel cell start-up and shut-down by anode purging. Journal of Power Sources 219:240–48. doi:10.1016/j.jpowsour.2012.07.037.
  • Liu, Z., Q. Shi, R. Zhang, Q. Wang, G. Kang, and F. Peng. 2014. Phosphorus-doped carbon nanotubes supported low Pt loading catalyst for the oxygen reduction reaction in acidic fuel cells. Journal of Power Sources 268:171–75. doi:10.1016/j.jpowsour.2014.06.036.
  • Mittermeier, T., A. Weiß, F. Hasché, and H. A. Gasteiger. 2018. PEM fuel cell start-up/shut-down losses vs relative humidity: The impact of water in the electrode layer on carbon corrosion. Journal of the Electrochemical Society 165:F1349–F57. doi:10.1149/2.0931816jes.
  • Mittermeier, T., A. Weiß, F. Hasché, G. Hübner, and H. A. Gasteiger. 2016. PEM fuel cell start-up/shut-down losses vs temperature for non-graphitized and graphitized cathode carbon supports. Journal of the Electrochemical Society 164:F127–F37. doi:10.1149/2.1061702jes.
  • Mohanta, P., F. Regnet, and L. Jörissen. 2018. Graphitized carbon: A promising stable cathode catalyst support material for long term PEMFC applications. Materials 11:907. doi:10.3390/ma11060907.
  • Parrondo, J., T. Han, E. Niangar, C. Wang, N. Dale, K. Adjemian, V. Ramani. 2014. Platinum supported on titanium-ruthenium oxide is a remarkably stable electrocatayst for hydrogen fuel cell vehicles. Proceedings of the National Academy of Sciences of the United States of America 111:45–50. doi:10.1073/pnas.1319663111.
  • Reiser, C. A., L. Bregoli, T. W. Patterson, J. S. Yi, J. D. Yang, M. L. Perry, T. D. Jarvi. 2005. A reverse-current decay mechanism for fuel cells. Electrochemical and Solid State Letters 8:A273–A6. doi:10.1149/1.1896466.
  • Sadhasivam, T., K. Dhanabalan, S.-H. Roh, T.-H. Kim, K.-W. Park, S. Jung, M. D. Kurkuri, H.-Y. Jung. 2017. A comprehensive review on unitized regenerative fuel cells: Crucial challenges and developments. International Journal of Hydrogen Energy 42:4415–33. doi:10.1016/j.ijhydene.2016.10.140.
  • Sadhasivam, T., S.-H. Roh, T.-H. Kim, K.-W. Park, and H.-Y. Jung. 2016. Graphitized carbon as an efficient mesoporous layer for unitized regenerative fuel cells. International Journal of Hydrogen Energy 41:18226–30. doi:10.1016/j.ijhydene.2016.08.092.
  • Schwämmlein, J. N., P. J. Rheinländer, Y. Chen, K. T. Freyer, and H. A. Gasteiger. 2018. Anode aging during PEMFC start-up and shut-down: H2-air fronts vs voltage cycles. Journal of the Electrochemical Society 165:F1312–F22. doi:10.1149/2.0611816jes.
  • Shahgaldi, S., and J. Hamelin. 2015. Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: A critical review. Carbon 94:705–28. doi:10.1016/j.carbon.2015.07.055.
  • Sharma, S., and S. K. Ghoshal. 2015. Hydrogen the future transportation fuel: From production to applications. Renewable and Sustainable Energy Reviews 43:1151–58. doi:10.1016/j.rser.2014.11.093.
  • Tokarz, W., and P. Piela. 2016. Mitigation of catalysts degradation upon stopping work of polymer electrolyte membrane fuel cells for longer time. International Journal of Hydrogen Energy 41:15002–06. doi:10.1016/j.ijhydene.2016.05.067.
  • Wang, C., and S. Hirano. 2017. Method to enhance fuel cell powertrain system robustness by reducing cathode potential during start-up condition. SAE Technical Paper Series. doi:10.4271/2017-01-1186.
  • Wang, Y., K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher. 2011. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy 88:981–1007. doi:10.1016/j.apenergy.2010.09.030.
  • Yamashita, Y., S. Itami, J. Takano, K. Kakinuma, H. Uchida, M. Watanabe, A. Iiyama, M. Uchida. 2017. Degradation mechanisms of carbon supports under hydrogen passivation startup and shutdown process for PEFCs. Journal of the Electrochemical Society 164:F181–F7. doi:10.1149/2.0101704jes.
  • Yu, P. T., F. T. Wagner, G. W. Skala, B. Lakshmanan, and J. P. Salvador 2006. Method of mitigating fuel cell degradation due to startup and shutdown via hydrogen/nitrogen storage. US Patent 20080145716A1, filed December 18, 2006, and issued June 19, 2008.
  • Yu, Y., H. Li, H. Wang, X.-Z. Yuan, G. Wang, and M. Pan. 2012a. A review on performance degradation of proton exchange membrane fuel cells during startup and shutdown processes: Causes, consequences, and mitigation strategies. Journal of Power Sources 205:10–23. doi:10.1016/j.jpowsour.2012.01.059.
  • Yu, Y., Z. Tu, H. Zhang, Z. Zhan, and M. Pan. 2011. Comparison of degradation behaviors for open-ended and closed proton exchange membrane fuel cells during startup and shutdown cycles. Journal of Power Sources 196:5077–83. doi:10.1016/j.jpowsour.2011.01.075.
  • Yu, Y., X.-Z. Yuan, H. Li, E. Gu, H. Wang, G. Wang, M. Pan. 2012b. Current mapping of a proton exchange membrane fuel cell with a segmented current collector during the gas starvation and shutdown processes. International Journal of Hydrogen Energy 37:15288–300. doi:10.1016/j.ijhydene.2012.07.023.
  • Zhang, Q., R. Lin, X. Cui, S. X. Xia, Z. Yang, and Y. T. Chang. 2017. Study of the two-phase dummy load shut-down strategy for proton exchange membrane fuel cells. Journal of Power Sources 341:230–39. doi:10.1016/j.jpowsour.2016.11.098.
  • Zhang, T., P. Wang, H. Chen, and P. Pei. 2018. A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition. Applied Energy 223:249–62. doi:10.1016/j.apenergy.2018.04.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.