265
Views
4
CrossRef citations to date
0
Altmetric
Articles

Dynamic simulation and performance prediction of free displacer Stirling engines

, &
Pages 427-439 | Received 24 Jan 2020, Accepted 07 Apr 2020, Published online: 12 May 2020

References

  • Ahmadi, M. H., M. A. Ahmadi, and F. Pourfayaz. 2017. Thermal models for analysis of performance of Stirling engine: A review. Renewable and Sustainable Energy Reviews 68:168–84. doi:10.1016/j.rser.2016.09.033.
  • Alfarawi, S., R. Al-Dadah, and S. Mahmoud. 2016. Enhanced thermodynamic modelling of a gamma-type Stirling engine. Applied Thermal Engineering 106:1380–90. doi:10.1016/j.applthermaleng.2016.06.145.
  • Araoz, J. A., E. Cardozo, M. Salomon, L. Alejo, and T. H. Fransson. 2015. Development and validation of a thermodynamic model for the performance analysis of a gamma Stirling engine prototype. Applied Thermal Engineering 83:16–30. doi:10.1016/j.applthermaleng.2015.03.006.
  • Babaelahi, M., and H. Sayyaadi. 2014. Simple-II: A new numerical thermal model for predicting thermal performance of Stirling engines. Energy 69:873–90. doi:10.1016/j.energy.2014.03.084.
  • Babaelahi, M., and H. Sayyaadi. 2016. Analytical closed-form model for predicting the power and efficiency of Stirling engines based on a comprehensive numerical model and the genetic programming. Energy 98:324–39. doi:10.1016/j.energy.2016.01.031.
  • Boucher, J., and P. Nika. 2007. Optimization of a dual free piston Stirling engine. Applied Thermal Engineering 27:802–11. doi:10.1016/j.applthermaleng.2006.10.021.
  • Brandhorst, H. W., and P. A. Chapman. 2008. New 5 kW free-piston Stirling space convertor developments. Acta Astronautica 63:342–47. doi:10.1016/j.actaastro.2007.12.020.
  • Cheng, C. H., H. S. Yang, B. Y. Jhou, Y. C. Chen, and Y. J. Wang. 2013. Dynamic simulation of thermal-lag Stirling engines. Applied Energy 108:466–76. doi:10.1016/j.apenergy.2013.03.062.
  • Daoud, J. M., and D. Friedrich. 2019. Design of the multi-cylinder Stirling engine arrangement with self-start capability and reduced vibrations. Applied Thermal Engineering 151:134–45. doi:10.1016/j.applthermaleng.2019.01.095.
  • Eid, E. 2009. Performance of a beta-configuration heat engine having a regenerative displacer. Renewable Energy 34:2404–13. doi:10.1016/j.renene.2009.03.016.
  • Garcia, M. T., E. C. Trujillo, J. A. V. Godino, and D. S. Martinez. 2018. Thermodynamic model for performance analysis of a Stirling engine prototype. Energies 11:1–25. doi:10.3390/en11102655.
  • Gheith, R., F. Aloui, and S. B. Nasrallah. 2012. Optimization of Stirling engine performance based on an experimental design approach. International Journal of Energy Research 37:1519–28. doi:10.1002/er.2964.
  • Hachem, H., R. Gheith, F. Aloui, and S. B. Nasrallah. 2015. Numerical characterization of a γ-Stirling engine considering losses and interaction between functioning parameters. Energy Conversion and Management 96:532–43. doi:10.1016/j.enconman.2015.02.065.
  • Hooshang, M., R. A. Moghadam, and S. AlizadehNia. 2016. Dynamic response simulation and experiment for gamma-type Stirling engine. Renewable Energy 86:192–205. doi:10.1016/j.renene.2015.08.018.
  • Hsieh, Y. C., T. C. Hsu, and J. S. Chiou. 2008. Investigation of a free-piston Stirling engine and a moving grate incinerator. Renewable Energy 33:48–54. doi:10.1016/j.renene.2007.01.015.
  • Karabulut, H., C. Cinar, E. Ozturk, and H. S. Yucesu. 2010. Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism. Renewable Energy 35:138–43. doi:10.1016/j.renene.2009.04.023.
  • Karabulut, H., F. Aksoy, and E. Ozturk. 2009a. Thermodynamic analysis of a β-type Stirling engine with a displacer driving mechanism by means of a lever. Renewable Energy 34:202–08. doi:10.1016/j.renene.2008.03.011.
  • Karabulut, H., H. S. Yucesu, C. Cinar, and F. Aksoy. 2009b. An experimental study on the development of a β-type Stirling engine for low and moderate temperature heat sources. Applied Energy 86:68–73. doi:10.1016/j.apenergy.2008.04.003.
  • Karabulut, H., M. Okur, and A. O. Ozdemir. 2019. Performance prediction of a Martini type of Stirling engine. Energy Conversion and Management 179:1–12. doi:10.1016/j.enconman.2018.10.059.
  • Majidniyaa, M., T. Boileau, B. Remy, and M. Zandi. 2020. Nonlinear modeling of a Free Piston Stirling Engine combined with a Permanent Magnet Linear Synchronous Machine. Applied Thermal Engineering 165:1–8. doi:10.1016/j.applthermaleng.2019.114544.
  • Mou, I., and G. Hong. 2017. Startup mechanism and power distribution of free piston Stirling engine. Energy 123:655–63. doi:10.1016/j.energy.2017.02.030.
  • Organ, A. J. 2013. Stirling cycle engines. Inner Workings and Design, John Wiley & Sons, USA. doi:10.1002/9781118818428
  • Qui, S., Y. Gao, G. Rinker, and K. Yanaga. 2019. Development of an advanced free-piston Stirling engine for micro combined heating and power application. Applied Energy 235:987–1000. doi:10.1016/j.apenergy.2018.11.036.
  • Tavakolpour-Saleh, A. R., S. H. Zare, and H. Bahreman. 2017. A novel active free piston Stirling engine: Modeling, development and experiment. Applied Energy 199:400–15. doi:10.1016/j.apenergy.2017.05.059.
  • Tlili, I., Y. Timoumi, and S. B. Nasrallah. 2008. Analysis and design consideration of mean temperature differential Stirling engine for solar application. Renewable Energy 33:1911–21. doi:10.1016/j.renene.2007.09.024.
  • Toghyani, S., A. Kasaeian, S. H. Hashemabadi, and M. Salimi. 2014. Multi-objective optimization of GPU3 Stirling engine using third order analysis. Energy Conversion and Management 87:521–29. doi:10.1016/j.enconman.2014.06.066.
  • Walker, G. 1980. Stirling Engines. Oxford: Clarendon Press.
  • Wang, K., S. Dubey, F. H. Choo, and F. Duan. 2016. A transient one-dimensional numerical model for kinetic Stirling engine. Applied Energy 183:775–90. doi:10.1016/j.apenergy.2016.09.024.
  • Zare, S., and A. R. Tavakolpour-Saleh. 2020. Predicting onset conditions of a free piston Stirling engine. Applied Energy 262:1–14. doi:10.1016/j.apenergy.2019.114488.
  • Zhu, S., G. Yu, Y. Ma, Y. Cheng, Y. Wang, S. Yu, Z. Wu, W. Dai, and E. Luo. 2019. A free-piston Stirling generator integrated with a parabolic trough collector for thermal-to-electric conversion of solar energy. Applied Energy 242:1248–58. doi:10.1016/j.apenergy.2019.03.169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.