1,074
Views
14
CrossRef citations to date
0
Altmetric
Articles

Optimizing Li2O-2B2O3 coating layer on LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material for high-performance lithium-ion batteries

, , &
Pages 447-455 | Received 24 Feb 2020, Accepted 24 Apr 2020, Published online: 13 May 2020

References

  • Bi, Y., T. Wang, M. Liu, R. Du, W. C. Yang, Z. Liu, Z. Peng, Y. Liu, D. Wang, and X. Sun. 2016. Stability of Li2CO3 in cathode of lithium ion battery and its influence on electrochemical performance. RSC Advances 6 (23):19233–37. doi:10.1039/C6RA00648E.
  • Cao, Y., X. Qi, K. Hu, Y. Wang, Z. Gan, Y. Li, G. Hu, Z. Peng, and K. Du. 2018. Conductive polymers encapsulation to enhance electrochemical performance of Ni-Rich cathode material for Li-ion Batteries. Applied Materials & Interfaces 10 (21):18270–80. doi:10.1021/acsami.8b02396.
  • Chan, H. W., J. G. Duh, and S. R. Sheen. 2005. Surface treatment of the lithium boron oxide coated LiMn2O4 cathode material in Li-ion battery. Key Engineering Materials 280:671–76. doi:10.4028/www.scientific.net/KEM.280-283.671.
  • Chen, Y., X. Wang, J. Zhang, B. Chen, J. Xu, S. Zhang, and L. Zhang. 2019a. Al2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes as cathode materials for high-performance lithium ion batteries. RSC Advances 9:2172–79. doi:10.1039/C8RA09428D.
  • Chen, Z., Z. Wang, G. T. Kim, H. Wang, X. Wang, Y. Huang, S. Passerini, and Z. Shen. 2019b. Enhancing the electrochemical performance of LiNi0.4Co0.2Mn0.4O2 by V2O5/LiV3O8 coating. ACS Applied Materials & Interfaces 30:26994–7003. doi:10.1021/acsami.9b08591.
  • Choi, S. H., J. H. Kim, Y. N. Ko, Y. J. Hong, and Y. C. Kang. 2012. Electrochemical properties of Li2O-2B2O3 glass-modified LiMn2O4 powers prepared by spray pyrolysis process. Journal of Power Sources 210:110–15. doi:10.1016/j.jpowsour.2012.03.016.
  • Ding, Y., Z. P. Cano, A. Yu, J. Lu, and Z. Chen. 2019. Automotive Li-Ion batteries: current status and future perspectives. Electrochemical Energy Reviews 2:1–28. doi:10.1007/s41918-018-0022-z.
  • Dong, Y., Y. Zhao, H. Duan, and J. Huang. 2015. Electrochemical performance and lithium-ion insertion/extraction studies of the novel Li3ZrO3 anode materials. Electrochimica Acta 161:219–25. doi:10.1016/j.electacta.2015.01.220.
  • Du, M., P. Yang, W. He, S. Bie, H. Zhao, J. Yin, Z. Zou, and J. Liu. 2019. Enhanced high-voltage cycling stability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode coated with Li2O-2B2O3. Journal of Alloys and Compounds 805:991–98. doi:10.1016/j.jallcom.2019.07.176.
  • Hao, Z., X. Xu, H. Wang, J. Liu, and H. Yan. 2019. In situ growth of Co3O4 coating layer derived from MOFs on LiNi0.8Co0.15Al0.05O2 cathode materials. Ionics 25:2469–76. doi:10.1007/s11581-018-2726-9.
  • Ji, Y., C. Zhou, F. Lin, B. Li, F. Yang, H. Zhu, J. Duan, and Z. Chen. 2020. Submicron-Sized Nb-doped lithium garnet for high conductivity solid electrolyte and performance of quasi-solid-state lithium battery. Materials 13:560. doi:10.3390/ma13030560.
  • Jiang, J., and J. R. Dahn. 2004. ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li(Ni0.1Co0.8Mn0.1)O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochemistry Communications 6 (1):39–43. doi:10.1016/j.elecom.2003.10.011.
  • Li, D. C., T. Muta, L. Q. Zhang, M. Yoshio, and H. Noguchi. 2004. Effect of synthesis method on the electrochemical performance of LiNi1/3Co1/3Mn1/3O2. Journal of Power Sources 132 (1–2):150–55. doi:10.1016/j.jpowsour.2004.01.016.
  • Li, G., X. Chen, Y. Liu, and W. Yang. 2018a. One-time sintering process to synthesize ZrO2-coated LiMn2O4 materials for lithium-ion batteries. RCS Advances 8:16753–61. doi:10.1039/C8RA01421C.
  • Li, L., L. Xia, H. Yang, X. Zhan, J. Chen, Z. Chen, and J. Duan. 2020. Solid-state synthesis of Lanthanum-baed oxides Co-coated LiNi0.5Co0.2Mn0.3O2 for advanced lithium ion batteries. Journal of Alloys and Compounds 832:154959. doi:10.1016/j.jallcom.2020.154959.
  • Li, Q., R. Dang, M. Chen, Y. Lee, Z. Hu, and X. Xiao. 2018b. A synthesis method for long cycle life lithium-ion cathode material: Nickel-rich core-shell LiNi0.8Co0.1Mn0.1O2. ACS Applied Materials & Interfaces 10:17850–60. doi:10.1021/acsami.8b02000.
  • Lim, S. N., W. Ahn, S. H. Yeon, and S. B. Park. 2014. Enhanced elevated-temperature performance of Li(Ni0.8Co0.15Al0.05)O2 electrode coated with Li2O-2B2O3 glass. Electrochimi. Acta 136 (1):1–9. doi:10.1016/j.electacta.2014.05.056.
  • Liu, J., Q. Liu, H. Zhu, F. Lin, Y. Ji, B. Li, J. Duan, L. Li, and Z. Chen. 2020a. Effect of different composition on voltage attenuation of Li-Rich cathode material for lithium-ion batteries. Materials 13:40. doi:10.3390/ma13010040.
  • Liu, Q., H. Zhu, J. Liu, X. Liao, Z. Tang, C. Zhou, M. Yuan, J. Duan, L. Li, and Z. Chen. 2020b. High-performance lithium-rich layered oxide material: effects of preparation methods on microstructure and electrochemical properties. Materials 13:334. doi:10.3390/ma13020334.
  • Lu, J., Z. Chen, F. Pan, Y. Cui, and K. Amine. 2018. High-performance anode materials for rechargeable lithium-ion batteries. Electrochemical Energy Reviews 1:35–53. doi:10.1007/s41918-018-0001-4.
  • Ma, F., Y. Wu, G. Wei, S. Qiu, and J. Qu. 2019. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via wet-chemical coating of MgO. Journal of Solid State Electrochemistry 23:2213–24. doi:10.1007/s10008-019-04308-3.
  • Min, K., S. W. Seo, Y. Y. Song, H. S. Lee, and E. Cho. 2017. A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials. Physical Chemistry of Chemical Physics 19:1762–69. doi:10.1039/c6cp06270a.
  • Nobili, F., F. Croce, R. Tossici, I. Meschini, P. Reale, and R. Marassi. 2012. Sol-gel synthesis and electrochemical characterization of Mg-/Zr-doped LiCoO2 cathodes for Li-ion batteries. Journal of Power Sources 197:276–84. doi:10.1016/j.jpowsour.2011.09.053.
  • Noh, H. J., S. Youn, C. S. Yoon, and Y. K. Sun. 2013. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode materials for lithium-ion batteries. Journal of Power Sources 233:121–30. doi:10.1016/j.jpowsour.2013.01.063.
  • Noh, M., Y. Lee, and J. Cho. 2006. Water adsorption and storage characteristics of optimized LiCoO2 and LiNi1/3Co1/3Mn1/3O2 composite cathode materials for Li-ion cells. Journal of the Electrochemical Society 153:A935–A940. doi:10.1149/1.2186041.
  • Shangguan, X., Q. Wang, G. Yang, G. Jia, and F. Li. 2019. New insights into improving electrochemical performance of LiNi0.5Mn0.5O2 cathode material by Li2ZrO3 coating and Zr4+ doping. Ionics 25:4547–56. doi:10.1007/s11581-019-03015-3.
  • Song, H., J. Y. Kim, K. T. Kim, and Y. J. Park. 2011. Enhanced electrochemical properties of Li(Ni0.4Co0.3Mn0.3)O2 cathode by surface modification using Li3PO4-based materials. Journal of Power Sources 196:6847–55. doi:10.1016/j.jpowsour.2010.09.027.
  • Song, L., X. Li, Z. Xiao, L. Li, Z. Gao, and H. Zhu. 2019. Effect of Zr doping and Li2O-2B2O3 layer on the structural electrochemical properties of LiNi0.5Co0.2Mn0.3O2 cathode material: Experiments and first-principle calculations. Ionics 25:2017–26. doi:10.1007/s11581-018-2636-x.
  • Su, Y., G. Chen, L. Chen, W. Li, Q. Zhang, Z. Yang, Y. Lu, L. Bao, J. Tan, R. Chen, et al. 2018. High-rate structure-gradient Ni-Rich cathode material for lithium-ion batteries. ACS Applied Materials & Interfaces 11:36697–704. doi:10.1021/acsami.7b18933.
  • Su, Y., G. Chen, L. Chen, Y. Lu, Q. Zhang, Z. Lv, C. Li, L. Li, N. Liu, G. Tan, et al. 2019a. Improved stability of layered and porous Nickel-Rich cathode materials by relieving the accumulation of inner stress. ChemSusChem 13 (2):426–33. doi:10.1002/cssc.201902385.
  • Su, Y., Q. Zhang, L. Chen, L. Bao, Y. Lu, Q. Shi, J. Wang, S. Chen, and F. Wu. 2019b. Exposing the {010} planes by oriented self-assembly with nanosheets to improve the electrochemical performances of Ni-Rich Li[Ni0.8Co0.1Mn0.1]O2 microspheres. ACS Applied Materials & Interfaces 10 (7):6407–14. doi:10.1021/acsami.9b12113.
  • Wang, D., X. Li, Z. Wang, H. Guo, X. Chen, X. Zheng, Y. Xu, and J. Ru. 2015. Multifunctional Li2O-2B2O3 coating for enhancing high voltage electrochemical performances and thermal stability of layered structured LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries. Electrochimica Acta 174:1225–33. doi:10.1016/j.electacta.2015.06.111.
  • Wu, F., Q. Li, L. Chen, Y. Lu, Y. Su, L. Bao, L. Bao, R. Chen, and S. Chen. 2019a. Use of Ce to reinforce the interface of Ni‐Rich LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium‐ion batteries under high operating voltage. ChemSusChem 12 (4):935–43. doi:10.1002/cssc.201802304.
  • Wu, F., N. Liu, L. Chen, Y. Su, G. Tan, L. Bao, Q. Zhang, Y. Lu, J. Wang, S. Wang, et al. 2019b. Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy 59:50–57. doi:10.1016/j.nanoen.2019.02.027.
  • Wu, J., C. Han, H. Wu, H. Liu, Y. Zhang, and C. Lu. 2019c. Nano coating of Ce-tannic acid metal-organic coordination complex: Surface modification of layered Li0.12Mn0.6Ni0.2O2 by CeO2 coating for lithium-ion batteries. Ionics 25:3031–40. doi:10.1007/s11581-018-2823-9.
  • Xiong, X., D. Ding, Y. Bu, Z. Wang, B. Huang, H. Guo, and X. Li. 2014. Enhanced electrochemical properties of a LiNiO2-based cathode material by removing lithium residues with (NH4)2HPO4. Journal of Materials Chemistry A 2:11691–96. doi:10.1039/C4TA01282H.
  • Xu, P., H. Si, Y. Wang, and P. Wang. 2014. Calculation and characteristics analysis of lithium ion batteries’ internal resistance using HPPC test. Advanced Materials Research 926–930:915–18. doi:10.4028/www.scientific.net/AMR.926-930.915.
  • Yang, H., -H.-H. Wu, M. Ge, L. Li, Y. Yuan, Q. Yao, J. Chen, L. Xia, J. Zheng, Z. Chen, et al. 2019a. Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Advanced Functional Materials 29:1808825. doi:10.1002/adfm.201808825.
  • Yang, H., K. Wu, G. Hu, Z. Peng, Y. Cao, and K. Du. 2019b. Design and synthesis of double-functional polymer composite layer coating to enhance the electrochemical performance of the Ni-Rich cathode at the upper cut off voltage. Applied Materials & Interfaces 11 (8):8556–66. doi:10.1021/acsami.8b21621.
  • Yoon, W. S., K. W. Nam, D. Jiang, K. Y. Chung, J. Hanson, J. M. Chen, and X. Q. Yang. 2012. Structural study of coating effect on the thermal stability of charged MgO-coated LiNi0.8Co0.2O2 cathodes investigated by in situ XRD. Journal of Power Sources 217:128–34. doi:10.1016/j.jpowsour.2012.05.028.
  • Zhang, H., J. Xu, and J. Zhang. 2019. Surface-coating LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material by Al2O3, ZrO2 or Li2O-2B2O3 thin-layer for improving the performance of lithium-ion batteries. Frontiers in Materials Published on line. doi:10.3389/fmats.2019.00309.
  • Zhang, H., H. Zhao, M. A. Khan, W. Zou, J. Xu, L. Zhang, and J. Zhang. 2018. Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. Journal of Materials Chemistry A 6 (42):20564–620. doi:10.1039/C8TA05336G.
  • Zhao, S., F. Wu, L. Yang, L. Gao, and A. F. Burke. 2010. A measurement method for determination of dc internal resistance of batteries and supercapacitors. Electrochemistry Communications 12:242–45. doi:10.1016/j.elecom.2009.12.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.