241
Views
30
CrossRef citations to date
0
Altmetric
Research Article

Combustion, emission, and phase stability features of a diesel engine fueled by Jatropha/ethanol blends and n-butanol as co-solvent

, , , &
Pages 793-804 | Received 07 May 2020, Accepted 11 Jul 2020, Published online: 03 Aug 2020

References

  • Anbarasu, A., M. Saravanan, and M. Loganathan. 2013. The effect of ethanol addition in a biodiesel operated di diesel engine on combustion, performance, and emission characteristics. International Journal of Green Energy 10 (1):90–102. doi:10.1080/15435075.2011.651753.
  • Babu, V., and M. Murthy. 2017. Butanol and pentanol: The promising biofuels for CI engines – A review. Renewable and Sustainable Energy Reviews 78:1068–88. doi:10.1016/j.rser.2017.05.038.
  • Bae, C., and J. Kim. 2017. Alternative fuels for internal combustion engines. Proceedings of the Combustion Institute 36 (3):3389–413. doi:10.1016/j.proci.2016.09.009.
  • Çelebi, Y., and H. Aydın. 2019b. An overview on the light alcohol fuels in diesel engines. Fuel 236:890–911. doi:10.1016/j.fuel.2018.08.138.
  • Cheenkachorn, K., and B. Fungtammasan. 2009. Biodiesel as an additive for diesohol. International Journal of Green Energy 6 (1):57–72. doi:10.1080/15435070802701819.
  • Chockalingam, S. R., M. Kumar, and P. Pauldoss. 2017. Effective application of ethanol in diesel engines. International Journal of Green Energy 14 (12):1027–33. doi:10.1080/15435075.2017.1354300.
  • Damodharan, D., A. P. Sathiyagnanam, D. Rana, B. Rajesh Kumar, and S. Saravanan. 2017. Extraction and characterization of waste plastic oil (WPO) with the effect of n-butanol addition on the performance and emissions of a DI diesel engine fueled with WPO/diesel blends. Energy Conversion and Management 131:117–26. doi:10.1016/j.enconman.2016.10.076.
  • Di, Y., C. S. Cheung, and Z. Huang. 2009. Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil. Science of the Total Environment 407 (2):835–46. doi:10.1016/j.scitotenv.2008.09.023.
  • El-seesy, A. I., A. K. Abdel-rahman, M. Bady, and S. Ookawara. 2017. Performance, combustion, and emission characteristics of a diesel engine fueled by biodiesel-diesel mixtures with multi-walled carbon nanotubes additives. Energy Conversion and Management 135:373–93. doi:10.1016/j.enconman.2016.12.090.
  • El-Seesy, A. I., A. M. A. Attia, and H. M. El-Batsh. 2018a. The effect of aluminum oxide nanoparticles addition with Jojoba methyl ester-diesel fuel blend on a diesel engine performance, combustion and emission characteristics. Fuel 224:147–66. doi:10.1016/j.fuel.2018.03.076.
  • EL-Seesy, A. I., and H. Hassan. 2018. Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance. Renewable Energy 132:558–74. doi:10.1016/j.renene.2018.08.026.
  • EL-Seesy, A. I., H. Hassan, Z. He, and S. Ookawara. 2020a. Improving diesel engine performance using carbon nanomaterials, carbon nanomaterials for agri-food and environmental applications. Elsevier Inc. Fuel 279:118433. doi:10.1016/b978-0-12-819786-8.00005-0.
  • EL-Seesy, A. I., H. Hassan, and H. Kosaka. 2019a. Improving the performance of a diesel engine operated with jojoba biodiesel-diesel-n-butanol ternary blends. Energy Procedia 156:33–37. doi:10.1016/j.egypro.2018.11.079.
  • El-seesy, A. I., H. Hassan, and S. Ookawara. 2019. Influence of adding multiwalled carbon nanotubes to waste cooking oil biodiesel on the performance and emission characteristics of a diesel engine : An experimental investigation. International Journal of Green Energy 1–16. doi:10.1080/15435075.2019.1642895.
  • El-Seesy, A. I., H. Hassan, and S. Ookawara. 2018b. Effects of graphene nanoplatelet addition to jatropha biodiesel–diesel mixture on the performance and emission characteristics of a diesel engine. Energy 147:1129–52. doi:10.1016/j.energy.2018.01.108.
  • El-seesy, A. I., Z. He, H. Hassan, and D. Balasubramanian. 2020b. Improvement of combustion and emission characteristics of a diesel engine working with diesel/jojoba oil blends and butanol additive. Fuel 279:118433. doi:10.1016/j.fuel.2020.118433.
  • EL-Seesy, A. I., Z. Kayatas, M. Hawi, H. Kosaka, and Z. He. 2019b. Combustion and emission characteristics of a rapid compression-expansion machine operated with N-heptanol-methyl oleate biodiesel blends. Renewable Energy 147:2064–76. doi:10.1016/j.renene.2019.09.132.
  • EL-Seesy, A. I., Z. Kayatas, R. Takayama, Z. He, S. Kandasamy, and H. Kosaka. 2020b. Combustion and emission characteristics of RCEM and common rail diesel engine working with diesel fuel and ethanol/hydrous ethanol injected in the intake and exhaust port: Assessment and comparison. Energy Conversion and Management 205:112453. doi:10.1016/j.enconman.2019.112453.
  • EL-Seesy, A. I., H. Kosaka, H. Hassan, and S. Sato. 2019c. Combustion and emission characteristics of a common rail diesel engine and RCEM fueled by n-heptanol-diesel blends and carbon nanomaterial additives. Energy Conversion and Management 196:370–94. doi:10.1016/j.enconman.2019.05.049.
  • El-Seesy, A. I., M. Nour, A. M. A. Attia, Z. He, and H. Hassan. 2020. Investigation the effect of adding graphene oxide into diesel/higher alcohols blends on a diesel engine performance. International Journal of Green Energy 1–21. doi:10.1080/15435075.2020.1722132.
  • Emiroğlu, A. O., and M. Şen. 2018. Combustion, performance and exhaust emission characterizations of a diesel engine operating with a ternary blend (alcohol- biodiesel-diesel fuel). Applied Thermal Engineering 133:371–80. doi:10.1016/j.applthermaleng.2018.01.069.
  • Gad, M. S., A. I. EL-Seesy, A. Radwan, and Z. He. 2020. Enhancing the combustion and emission parameters of a diesel engine fueled by waste cooking oil biodiesel and gasoline additives. Fuel 269:117466. doi:10.1016/j.fuel.2020.117466.
  • Gawale, G. R., and G. Naga Srinivasulu. 2020. Experimental investigation of ethanol/diesel and ethanol/biodiesel on dual fuel mode HCCI engine for different engine load conditions. Fuel 263:116725. doi:10.1016/j.fuel.2019.116725.
  • Ghadikolaei, M. A., C. S. Cheung, and K. F. Yung. 2018a. Comparison between blended mode and fumigation mode on combustion, performance and emissions of a diesel engine fueled with ternary fuel (diesel-biodiesel-ethanol) based on engine speed. Journal of the Energy Institute 92:1233–50. doi:10.1016/j.joei.2018.10.010.
  • Ghadikolaei, M. A., C. S. Cheung, and K. F. Yung. 2018b. Study of combustion, performance and emissions of diesel engine fueled with diesel/biodiesel/alcohol blends having the same oxygen concentration. Energy 157:258–69. doi:10.1016/j.energy.2018.05.164.
  • Ghadikolaei, M. A., C. S. Cheung, and K. F. Yung. 2019a. Study of combustion, performance and emissions of a diesel engine fueled with ternary fuel in blended and fumigation modes. Fuel 235:288–300. doi:10.1016/j.fuel.2018.07.089.
  • Ghadikolaei, M. A., K. F. Yung, C. S. Cheung, and P. C. Lau. 2019b. Particulate emission and physical properties of particulate matter emitted from a diesel engine fueled with ternary fuel (diesel-biodiesel-ethanol) in blended and fumigation modes. Fuel 251:368–82. doi:10.1016/j.fuel.2019.04.007.
  • Hagos, F. Y., O. M. Ali, R. Mamat, and A. A. Abdullah. 2017. Effect of emulsification and blending on the oxygenation and substitution of diesel fuel for compression ignition engine. Renewable and Sustainable Energy Reviews 75:1281–94. doi:10.1016/j.rser.2016.11.113.
  • Heywood, J. B. 1988. Internal Combustion Engine Fundamentals. USA: McGrawHill series in mechanical engineering. doi:org/10987654.
  • Holman, J. P. 2001. Experimental methods for engineers. EIGHTH. 1221 Avenue of the Americas, New York, NY 10020: McGraw-Hill Companies, Inc. doi:10.1016/0894-1777(94)90118-X.
  • Ibrahim, A. 2016b. Performance and combustion characteristics of a diesel engine fuelled by butanol-biodiesel-diesel blends. Applied Thermal Engineering 103:651–59. doi:10.1016/j.applthermaleng.2016.04.144.
  • Imtenan, S., H. H. Masjuki, M. Varman, M. A. Kalam, M. I. Arbab, H. Sajjad, and S. M. Ashrafur Rahman. 2014a. Impact of oxygenated additives to palm and jatropha biodiesel blends in the context of performance and emissions characteristics of a light-duty diesel engine. Energy Conversion and Management 83:149–58. doi:10.1016/j.enconman.2014.03.052.
  • Imtenan, S., H. H. Masjuki, M. Varman, I. M. Rizwanul Fattah, H. Sajjad, and M. I. Arbab. 2015. Effect of n-butanol and diethyl ether as oxygenated additives on combustion-emission-performance characteristics of a multiple cylinder diesel engine fuelled with diesel-jatropha biodiesel blend. Energy Conversion and Management 94:84–94. doi:10.1016/j.enconman.2015.01.047.
  • Imtenan, S., M. Varman, H. H. Masjuki, M. A. Kalam, H. Sajjad, M. I. Arbab, and I. M. R. Fattah. 2014b. Impact of low temperature combustion attaining strategies on diesel engine emissions for diesel and biodiesels : A review. Energy Conversion and Management 80:329–56.
  • Jin, C., X. Pang, X. Zhang, S. Wu, M. Ma, Y. Xiang, J. Ma, J. Ji, G. Wang, and H. Liu. 2019. Effects of C3–C5 alcohols on solubility of alcohols/diesel blends. Fuel 236:65–74. doi:10.1016/j.fuel.2018.08.129.
  • Kandasamy, S. K., A. S. Selvaraj, and T. K. R. Rajagopal. 2019. Experimental investigations of ethanol blended biodiesel fuel on automotive diesel engine performance, emission and durability characteristics. Renewable Energy 141:411–19. doi:10.1016/j.renene.2019.04.039.
  • Killol, A., N. Reddy, S. Paruvada, and S. Murugan. 2019. Experimental studies of a diesel engine run on biodiesel n-butanol blends. Renewable Energy 135:687–700. doi:10.1016/j.renene.2018.12.011.
  • Krishna, S. M., P. Abdul Salam, M. Tongroon, and N. Chollacoop. 2019. Performance and emission assessment of optimally blended biodiesel-diesel-ethanol in diesel engine generator. Applied Thermal Engineering 155:525–33. doi:10.1016/j.applthermaleng.2019.04.012.
  • Krishnamoorthi, M., R. Malayalamurthi, Z. He, and S. Kandasamy. 2019. A review on low temperature combustion engines: Performance, combustion and emission characteristics. Renewable and Sustainable Energy Reviews 116:109404. doi:10.1016/j.rser.2019.109404.
  • Liu, H., B. Hu, and C. Jin. 2016. Effects of different alcohols additives on solubility of hydrous ethanol/diesel fuel blends. Fuel 184:440–48. doi:10.1016/j.fuel.2016.07.037.
  • Mendes Guedes, A. D., S. Leal Braga, and F. Pradelle. 2018. Performance and combustion characteristics of a compression ignition engine running on diesel-biodiesel-ethanol (DBE) blends – Part 2: Optimization of injection timing. Fuel 225:174–83. doi:10.1016/j.fuel.2018.02.120.
  • Nanthagopal, K., R. S. Kishna, A. E. Atabani, A. H. Al-Muhtaseb, G. Kumar, and B. Ashok. 2020a. A compressive review on the effects of alcohols and nanoparticles as an oxygenated enhancer in compression ignition engine. Energy Conversion and Management 203:112244. doi:10.1016/j.enconman.2019.112244.
  • Nayyar, A., D. Sharma, S. L. Soni, and A. Mathur. 2017. Characterization of n-butanol diesel blends on a small size variable compression ratio diesel engine: Modeling and experimental investigation. Energy Conversion and Management 150:242–58. doi:10.1016/j.enconman.2017.08.031.
  • Nisar, J., R. Razaq, M. Farooq, M. Iqbal, R. Ali, M. Sayed, and A. Shah. 2017. Enhanced biodiesel production from Jatropha oil using calcined waste animal bones as catalyst. Renewable Energy 101:111–19. doi:org/10.1016/j.renene.2016.08.048.
  • No, S. Y. 2016. Application of biobutanol in advanced CI engines – A review. Fuel 183:641–58. doi:10.1016/j.fuel.2016.06.121.
  • Noh, H. K., and S. Y. No. 2017. Effect of bioethanol on combustion and emissions in advanced CI engines: HCCI, PPC and GCI mode – A review. Applied Energy 208:782–802. doi:10.1016/j.apenergy.2017.09.071.
  • Nour, M., A. M. A. Attia, and S. A. Nada. 2019a. Improvement of CI engine combustion and performance running on ternary blends of higher alcohol (pentanol and octanol)/hydrous ethanol/diesel. Fuel 251:10–22. doi:10.1016/j.fuel.2019.04.026.
  • Nour, M., A. M. A. Attia, and S. A. Nada. 2019b. Combustion, performance and emission analysis of diesel engine fuelled by higher alcohols (butanol, octanol and heptanol)/diesel blends. Energy Conversion and Management 185:313–29. doi:10.1016/j.enconman.2019.01.105.
  • Nour, M., A. I. EL-Seesy, A. K. Abdel-Rahman, and M. Bady. 2018. Influence of adding aluminum oxide nanoparticles to diesterol blends on the combustion and exhaust emission characteristics of a diesel engine. Experimental Thermal and Fluid Science 98:634–44. doi:10.1016/j.expthermflusci.2018.07.009.
  • Nour, M., H. Kosaka, M. Bady, S. Sato, and A. K. Abdel-Rahman. 2017a. Combustion and emission characteristics of DI diesel engine fuelled by ethanol injected into the exhaust manifold. Fuel Processing Technology 164:33–50. doi:10.1016/j.fuproc.2017.04.018.
  • Nour, M., H. Kosaka, S. Sato, M. Bady, A. K. Abdel-Rahman, and K. Uchida. 2017b. Effect of ethanol/water blends addition on diesel fuel combustion in RCM and DI diesel engine. Energy Conversion and Management 149:228–43. doi:10.1016/j.enconman.2017.07.026.
  • Pachiannan, T., W. Zhong, S. Rajkumar, Z. He, X. Leng, and Q. Wang. 2019. A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies. Applied Energy 251:113380. doi:10.1016/j.apenergy.2019.113380.
  • Paul, A., R. Panua, and D. Debroy. 2017. An experimental study of combustion, performance, exergy and emission characteristics of a ci engine fueled by diesel-ethanol-biodiesel blends. Energy 141:839–52. doi:10.1016/j.energy.2017.09.137.
  • Pearson, R. J., and J. W. G. Turner. n.d.. Using alternative and renewable liquid fuels to improve the environmental performance of internal combustion engines: Key challenges and blending technologies, alternative fuels and advanced vehicle technologies for improved environmental performance : Towards zero carbon transportation. Woodhead Publishing Limited. doi:10.1533/9780857097422.1.52.
  • Pedrozo, V. B., I. May, W. Guan, and H. Zhao. 2018. High efficiency ethanol-diesel dual-fuel combustion: A comparison against conventional diesel combustion from low to full engine load. Fuel 230:440–51. doi:10.1016/j.fuel.2018.05.034.
  • Rajesh Kumar, B., and S. Saravanan. 2016. Use of higher alcohol biofuels in diesel engines: A review. Renewable and Sustainable Energy Reviews 60:84–115. doi:10.1016/j.rser.2016.01.085.
  • Saravanan, S., R. Kaliyanasunder, B. Rajesh Kumar, and G. Lakshmi Narayana Rao. 2019. Effect of design parameters on performance and emissions of a CI engine operated with diesel-biodiesel- higher alcohol blends. Renewable Energy. doi:10.1016/j.renene.2019.10.049.
  • Satsangi, D. P., and N. Tiwari. 2018. Experimental investigation on combustion, noise, vibrations, performance and emissions characteristics of diesel/n-butanol blends driven genset engine. Fuel 221:44–60. doi:10.1016/j.fuel.2018.02.060.
  • Shahir, V. K., C. P. Jawahar, V. Vinod, and P. R. Suresh. 2020. Experimental investigations on the performance and emission characteristics of a common rail direct injection engine using tyre pyrolytic biofuel. Journal of King Saud University - Engineering Science 32:78–84. doi:10.1016/j.jksues.2018.05.004.
  • Sivalakshmi, S., and T. Balusamy. 2012. Influence of ethanol addition on a diesel engine fuelled with neem oil methyl ester. International Journal of Green Energy 9 (3):218–28. doi:10.1080/15435075.2011.621477.
  • Srithar, K., K. Arun Balasubramanian, V. Pavendan, and B. Ashok Kumar. 2017. Experimental investigations on mixing of two biodiesels blended with diesel as alternative fuel for diesel engines. Journal of King Saud University - Engineering Science 29:50–56. doi:10.1016/j.jksues.2014.04.008.
  • Stone, R. 1989. Introduction to internal combustion engines, 2nd edition, the MACMHILLAN PRESS LTD. Journal of Chemical Information and Modeling. doi:10.1017/CBO9781107415324.004.
  • Tiwari, A. K., A. Kumar, and H. Raheman. 2007. Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids : An optimized process. 31:569–75. doi:10.1016/j.biombioe. Biomass and Bioenergy 2007.03.003.
  • Tongroon, M., P. Saisirirat, A. Suebwong, J. Aunchaisri, M. Kananont, and N. Chollacoop. 2019. Combustion and emission characteristics investigation of diesel-ethanol-biodiesel blended fuels in a compression-ignition engine and benefit analysis. Fuel 255:115728. doi:10.1016/j.fuel.2019.115728.
  • Venkata Subbaiah, G., and K. Raja Gopal. 2011. An experimental investigation on the performance and emission characteristics of a diesel engine fuelled with rice bran biodiesel and ethanol blends. International Journal of Green Energy 8 (2):197–208. doi:10.1080/15435075.2010.548539.
  • Venu, H., and V. Madhavan. 2016. Effect of Al2O3 nanoparticles in biodiesel-diesel-ethanol blends at various injection strategies: Performance, combustion and emission characteristics. Fuel 186:176–89. doi:10.1016/j.fuel.2016.08.046.
  • Venu, H., V. D. Raju, and L. Subramani. 2019. Combined effect of influence of nano additives, combustion chamber geometry and injection timing in a DI diesel engine fuelled with ternary (diesel-biodiesel-ethanol) blends. Energy 174:386–406. doi:10.1016/j.energy.2019.02.163.
  • Wei, L., C. S. Cheung, and Z. Ning. 2018. Effects of biodiesel-ethanol and biodiesel-butanol blends on the combustion, performance and emissions of a diesel engine. Energy 155:957–70. doi:10.1016/j.energy.2018.05.049.
  • Xiao, H., F. Guo, S. Li, R. Wang, and X. Yang. 2019. Combustion performance and emission characteristics of a diesel engine burning biodiesel blended with n-butanol. Fuel 258:115887. doi:10.1016/j.fuel.2019.115887.
  • Xuan, T., A. I. EL-Seesy, Y. Mi, P. Lu, W. Zhong, Z. He, and Q. Wang. 2020. Effects of an injector cooling jacket on combustion characteristics of compressed-ignition sprays with a gasoline-hydrogenated catalytic biodiesel blend. Fuel 276:117947. doi:10.1016/j.fuel.2020.117947.
  • Yesilyurt, M. K., T. Eryilmaz, and M. Arslan. 2018. A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/n-pentanol (C5 alcohol) fuel blends. Energy 165:1332–51. doi:10.1016/j.energy.2018.10.100.
  • Yusri, I. M., R. Mamat, M. K. Akasyah, M. F. Jamlos, and A. F. Yusop. 2019. Evaluation of engine combustion and exhaust emissions characteristics using diesel/butanol blended fuel. Applied Thermal Engineering 156:209–19. doi:10.1016/j.applthermaleng.2019.02.028.
  • Zhen, X., Y. Wang, and D. Liu. 2020. Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines. Renewable Energy 147:2494–521. doi:10.1016/j.renene.2019.10.119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.