331
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Performance Enhancement of a Beta Type Rhombic Drive Stirling engine

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 884-893 | Received 23 May 2020, Accepted 25 Jul 2020, Published online: 25 Aug 2020

References

  • Abdullah, S., B. F. Yousif, and K. Sopian. 2005. Design consideration of low temperature differential double-acting Stirling engine for solar application. Renewable Energy 30 (12):1923–41.
  • Ahima, R. S. 2020. Global warming threatens human thermoregulation and survival. The Journal of Clinical Investigation 130:2.
  • Ahmed, F., H. Hulin, and A. M. Khan. 2019. Numerical modeling and optimization of beta-type Stirling engine. Applied Thermal Engineering 149:385–400.
  • Aksoy, F., H. Solmaz, C. Çinar, and H. Karabulut. 2017. 1.2 kW beta type Stirling engine with rhombic drive mechanism. International Journal of Energy Research 41 (9):1310–21.
  • Al Moussawi, H., F. Fardoun, and H. Louahlia-Gualous. 2016. Review of tri-generation technologies: Design evaluation, optimization, decision-making, and selection approach. Energy Conversion and Management 15(120):157–96.
  • Alfarawi, S. 2020. Thermodynamic analysis of rhombic‐driven and crank‐driven beta‐type Stirling engines. International Journal of Energy Research44(7):5596-5608.
  • Ansari, E., K. Poorghasemi, B. K. Irdmousa, M. Shahbakhti, and J. Naber (2016). Efficiency and emissions mapping of a light duty diesel-natural gas engine operating in conventional diesel and RCCI modes. SAE Technical Paper.
  • Ardebili, S. M. S., H. Solmaz, and M. Mostafaei. 2019. Optimization of fusel oil–Gasoline blend ratio to enhance the performance and reduce emissions. Applied Thermal Engineering 148:1334–45.
  • Ardebili, S. M. S., A. Taghipoor, H. Solmaz, and M. Mostafaei. 2020. The effect of nano-biochar on the performance and emissions of a diesel engine fueled with fusel oil-diesel fuel. Fuel 268:117356.
  • Auguste, C., J. R. Nader, P. Marsh, and R. Cossu (2019). Influence of tidal energy converters on sediment dynamics in tidal channel.
  • Babaelahi, M., and H. Sayyaadi. 2016. Analytical closed-form model for predicting the power and efficiency of Stirling engines based on a comprehensive numerical model and the genetic programming. Energy 1 (98):324–39.
  • Badr, W. S., M. Fanni, A. K. Abdel-Rahman, and S. A. Rasoul. 2016. Dynamic simulation and optimization of rhombic drive Stirling engine using MSC ADAMS software. Procedia Technology 22:754–61.
  • Başaran, H. Ü. 2020. Utilizing exhaust valve opening modulation for fast warm-up of exhaust after-treatment systems on highway diesel vehicles. International Journal of Automotive Science and Technology 4 (1):10–22.
  • Bataineh, K. 2018. Mathematical formulation of alpha-type stirling engine with Ross Yoke mechanism. Energy 164:1178–99.
  • Beltrán-Chacon, R., D. Leal-Chavez, D. Sauceda, M. Pellegrini-Cervantes, and M. Borunda. 2015. Design and analysis of a dead volume control for a solar Stirling engine with induction generator. Energy 15 (93):2593–603.
  • Benato, A., and A. Stoppato. 2019. An experimental investigation of a novel low-cost photovoltaic panel active cooling system. Energies 12(8):1448.
  • Bergquist, P., and C. Warshaw. 2019. Does global warming increase public concern about climate change? The Journal of Politics 81 (2):686–91.
  • Bosshard, P., W. Hermann, E. Hung, R. Hunt, and A. J. Simon. 2006. An assessment of solar energy conversion technologies and research opportunities. Technical Assessment Report:GCEP Energy Assessment Analysis 45.
  • Bratspies, R. 2018. Protecting the environment in an Era of Federal Retreat: The view form New York City. FIU Law Review 13:5.
  • Caetano, B. C., I. F. Lara, M. U. Borges, O. R. Sandoval, and R. M. Valle. 2019. A novel methodology on beta-type Stirling engine simulation using CFD. Energy Conversion and Management 184:510–20.
  • Calam, A. 2020. Study on the combustion characteristics of acetone/n-heptane blend and RON50 reference fuels in an HCCI engine at different compression ratios. Fuel 271:117646.
  • Calam, A., H. Solmaz, E. Yılmaz, and Y. İçingür. 2019. Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine. Energy 168:1208–16.
  • Can, Ö., E. Öztürk, H. Solmaz, F. Aksoy, C. Çinar, and H. S. Yücesu. 2016. Combined effects of soybean biodiesel fuel addition and EGR application on the combustion and exhaust emissions in a diesel engine. Applied Thermal Engineering 95:115–24.
  • Çelikten, İ., E. Mutlu, and H. Solmaz. 2012. Variation of performance and emission characteristics of a diesel engine fueled with diesel, rapeseed oil and hazelnut oil methyl ester blends. Renewable Energy 48:122–26.
  • Chahartaghi, M., and M. Sheykhi. 2019. Energy, environmental and economic evaluations of a CCHP system driven by Stirling engine with helium and hydrogen as working gases. Energy174:1251-1266
  • Cheng, C. H., C. Y. Huang, and H. S. Yang. 2019. Development of a 90-K beta type Stirling cooler with rhombic drive mechanism. International Journal of Refrigeration 98:388–98.
  • Cheng, C. H., and H. S. Yang. 2012. Optimization of geometrical parameters for Stirling engines based on theoretical analysis. Applied Energy 92:395–405.
  • Cheng, C. H., H. S. Yang, and L. Keong. 2013. Theoretical and experimental study of a 300-W beta-type Stirling engine. Energy 59:590–99.
  • Cheng, C. H., and Y. J. Yu. 2012. Combining dynamic and thermodynamic models for dynamic simulation of a beta-type Stirling engine with rhombic-drive mechanism. Renewable Energy 37 (1):161–73.
  • Choi, D., Z. Gao, and W. Jiang. 2020. Attention to global warming. The Review of Financial Studies 33 (3):1112–45.
  • Cinar, C. 2014. Design and manufacturing of a hermetic Stirling engine. Proceedings of the Institution of Mechanical Engineers Part E: Journal of Process Mechanical Engineering 228 (1):14–20.
  • Cinar, C., F. Aksoy, and M. Okur. 2013. Design, manufacturing and performance tests of a stirling engine with rhombic drive mechanism. Journal of the Faculty of Engineering and Architecture of Gazi University 28 (4):795–801.
  • Ciniviz, M., İ. Örs, and B. S. Kul. 2017. The effect of adding EN (2-ethylhexyl nitrate) to diesel-ethanol blends on performance and exhaust emissions. International Journal of Automotive Science and Technology 1 (1):16–21.
  • Cui, Y., H. Yao, L. Hong, T. Zhang, Y. Xu, K. Xian, B. Gao, J. Qin, J. Zhang, Z. Wei, et al. 2019. Achieving over 15% efficiency in organic photovoltaic cells via copolymer design. Advanced Materials 31(14):1808356.
  • El Tawil, T., N. Guillou, J. F. Charpentier, and M. Benbouzid. 2019. On tidal current velocity vector time series prediction: A comparative study for a French high tidal energy potential site. Journal of Marine Science and Engineering 7 (2):46.
  • Erol, D., H. Yaman, and B. Doğan. 2017. A review development of rhombic drive mechanism used in the Stirling engines. Renewable and Sustainable Energy Reviews 78:1044–67.
  • Febriansyah, B., T. M. Koh, Y. Lekina, N. F. Jamaludin, A. Bruno, R. Ganguly, Z. X. Shen, S. G. Mhaisalkar, and J. England. 2019. Improved photovoltaic efficiency and amplified photocurrent generation in mesoporous n= 1 two-dimensional lead–iodide perovskite solar cells. Chemistry of Materials 31 (3):890–98.
  • García-Gil, A., G. Goetzl, M. R. Kłonowski, S. Borovic, D. P. Boon, C. Abesser, J. Holecek. 2020. Governance of shallow geothermal energy resources. Energy Policy 138:111283.
  • Gong, J., C. Li, and M. R. Wasielewski. 2019. Advances in solar energy conversion. Chemical Society Reviews 48 (7):1862–64.
  • Gultekin, E., C. Cinar, and M. Okur. 2020. Design, manufacturing and testing of a prototype two-stroke engine with rhombic drive mechanism. International Journal of Environmental Science and Technology 17 (1):455–62.
  • Güven, M., H. Bedir, and G. Anlaş. 2019. Optimization and application of Stirling engine for waste heat recovery from a heavy-duty truck engine. Energy Conversion and Management 180:411–24.
  • Karabulut, H., H. S. Yücesu, C. Çınar, and F. Aksoy. 2009. An experimental study on the development of a β-type Stirling engine for low and moderate temperature heat sources. Applied Energy 86 (1):68–73.
  • Katopodis, T., D. Vlachogiannis, N. Politi, N. Gounaris, S. Karozis, and A. Sfetsos. 2019. Assessment of climate change impacts on wind resource characteristics and wind energy potential in Greece. Journal of Renewable and Sustainable Energy 11 (6):066502.
  • Kongtragool, B., and S. Wongwises. 2003. A review of solar-powered Stirling engines and low temperature differential Stirling engines. Renewable and Sustainable Energy Reviews 7 (2):131–54.
  • Lundie, S., T. Wiedmann, M. Welzel, and T. Busch. 2019. Global supply chains hotspots of a wind energy company. Journal of Cleaner Production 210:1042–50.
  • Ma, Q., and P. Wang. 2020. Underground solar energy storage via energy piles. Applied Energy 261:114361.
  • Masser, R., A. Khodja, M. Scheunert, K. Schwalbe, A. Fischer, R. Paul, and K. H. Hoffmann. 2020. Optimized piston motion for an alpha-type stirling engine. Entropy 22 (6):700.
  • Menegaki, A. 2008. Valuation for renewable energy: A comparative review. Renewable and Sustainable Energy Reviews 12 (9):2422–37.
  • Moulton, J. F., and J. Silverwood. 2018. On the agenda? The multiple streams of brexit-era uk climate policy. Marmara Üniversitesi Avrupa Toplulugu Enstitüsü Avrupa Arastirmalari Dergisi 26 (1):75–100.
  • Olabi, A. G., M. Mahmoud, B. Soudan, T. Wilberforce, and M. Ramadan. 2020. Geothermal based hybrid energy systems, toward eco-friendly energy approaches. Renewable Energy 147:2003–12.
  • Owusu, P. A., and S. Asumadu-Sarkodie. 2016. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering 3 (1):1167990.
  • Özsezen, A. N. 2017. Experimental analysis of performance, combustion and injection characteristics of biodiesels obtained from waste cooking and canola oils. International Journal of Automotive Science and Technology 1 (1):22–28.
  • Paulillo, A., L. Cotton, R. Law, A. Striolo, and P. Lettieri. 2020. Geothermal energy in the UK: The life-cycle environmental impacts of electricity production from the United Downs Deep Geothermal Power project. Journal of Cleaner Production 249:119410.
  • Pogulyaev, Y., O. Nikishin, and A. Zheltov. 2017. The Kinematics of the swashplate engine with two rotating pairs. Procedia Engineering 206:1722–27.
  • Polat, S., H. Solmaz, A. Uyumaz, A. Calam, E. Yilmaz, and H. S. Yucesu. 2020a. An experimental research on the effects of negative valve overlap on performance and operating range in a homogeneous charge compression ignition (HCCI) engine with RON40 and RON60 fuels. Journal of Engineering for Gas Turbines and Power142(5):051007
  • Polat, S., H. Solmaz, E. Yılmaz, A. Calam, A. Uyumaz, and H. S. Yücesu. 2020b. Mapping of an HCCI engine using negative valve overlap strategy. Energy Sources. Part A: Recovery, Utilization, and Environmental Effects 42 (9):1140–54.
  • Poorghasemi, K., R. K. Saray, E. Ansari, B. K. Irdmousa, M. Shahbakhti, and J. D. Naber. 2017. Effect of diesel injection strategies on natural gas/diesel RCCI combustion characteristics in a light duty diesel engine. Applied Energy 199:430–46.
  • Sezer, İ. 2019. A review study on the using of diethyl ether in diesel engines: Effects on HC emissions. Avrupa Bilim Ve Teknoloji Dergisi 16:109–24.
  • Shendage, D. J., S. B. Kedare, and S. L. Bapat. Jan 1, 2011. An analysis of beta type Stirling engine with rhombic drive mechanism. Renewable Energy 36 (1):289–97.
  • Solmaz, H. 2020. A comparative study on the usage of fusel oil and reference fuels in an HCCI engine at different compression ratios. Fuel 273:117775.
  • Solmaz, H., and H. Karabulut. 2014. Performance comparison of a novel configuration of beta-type Stirling engines with rhombic drive engine. Energy Conversion and Management 78:627–33.
  • Sripakagorn, A., and C. Srikam. 2011. Design and performance of a moderate temperature difference Stirling engine. Renewable Energy 36 (6):1728–33.
  • Teo, H. G., P. S. Lee, and M. N. Hawlader. 2012. An active cooling system for photovoltaic modules. Applied Energy 90 (1):309–15.
  • Tilley, S. D. 2019. Recent advances and emerging trends in photo‐electrochemical solar energy conversion. Advanced Energy Materials 9 (2):1802877.
  • Uyumaz, A. 2020. Experimental evaluation of linseed oil biodiesel/diesel fuel blends on combustion, performance and emission characteristics in a DI diesel engine. Fuel 267:117150.
  • Uyumaz, A., F. Aksoy, F. Boz, and E. Yılmaz. 2017. Experimental investigation of neutralized waste cooking oil biodiesel and diesel fuels in a direct injection diesel engine at different engine loads. International Journal of Automotive Science and Technology 1 (1):7–15.
  • Wang, J., S. Zhou, Z. Zhang, and D. Yurchenko. 2019. High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Conversion and Management 181:645–52.
  • Wang, K., S. R. Sanders, S. Dubey, F. H. Choo, and F. Duan. 2016. Stirling cycle engines for recovering low and moderate temperature heat: A review. Renewable and Sustainable Energy Reviews 62:89–108.
  • Wigley, T. M. 2018. The Paris warming targets: Emissions requirements and sea level consequences. Climatic Change 147 (1–2):31–45.
  • Wigley, T. M. L., L. E. Clarke, J. A. Edmonds, H. D. Jacoby, S. Paltsev, H. Pitcher, J. M. Reilly, R. Richels, M. C. Sarofim, and S. J. Smith. 2009. Uncertainties in climate stabilization. Climatic Change 97 (1–2):85.
  • Yang, H. S., C. H. Cheng, and S. T. Huang. 2018. A complete model for dynamic simulation of a 1-kW class beta-type Stirling engine with rhombic-drive mechanism. Energy 161:892–906.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.