185
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Design and implementation of an intelligent digital pitch controller for digital hydraulic pitch system hardware-in-the-loop simulator of wind turbine

ORCID Icon & ORCID Icon
Pages 17-36 | Received 03 May 2020, Accepted 12 Aug 2020, Published online: 15 Nov 2020

References

  • Abdelbaky, M. A., X. Liu, and D. Jiang. 2020. Design and implementation of partial offline fuzzy model-predictive pitch controller for large-scale wind-turbines. Renewable Energy 145:981–96. doi:10.1016/j.renene.2019.05.074.
  • Anderson, W. 1988. Controlling electrohydraulic systems, Vol. 7. New york: CRC Press.
  • Bharani, R., and A. Sivaprakasam. 2019. A large volume wind data for renewable energy applications. Data in Brief 25:104291. doi:10.1016/j.dib.2019.104291.
  • Boukhezzar, B., and H. Siguerdidjane. 2010. Nonlinear control of a variable-speed wind turbine using a two-mass model. IEEE Transactions on Energy Conversion 26:149–62. doi:10.1109/TEC.2010.2090155.
  • Brusca, S., R. Lanzafame, and M. Messina. 2014. Flow similitude laws applied to wind turbines through blade element momentum theory numerical codes. International Journal of Energy and Environmental Engineering 5 (4):313–22. doi:10.1007/s40095-014-0128-y.
  • Che, Z. G., T. A. Chiang, and Z. H. Che. 2011. Feed-forward neural networks training: A comparison between genetic algorithm and back-propagation learning algorithm. International Journal of Innovative Computing, Information and Control 7:5839–50.
  • Chowdhury, M. A., N. Hosseinzadeh, and W. X. Shen. 2012. Smoothing wind power fluctuations by fuzzy logic pitch angle controller. Renewable Energy 38:224–33. doi:10.1016/j.renene.2011.07.034.
  • Council, G. W. E. 2011. GWEC. Global wind report, Annual market update 2010.
  • Dewangan, S., and S. Vadhera. 2020. Performance enhancement of a stand-alone induction generator-based wind energy system using neural network controller. International Journal of Green Energy 17:274–89. doi:10.1080/15435075.2020.1723594.
  • Duong, M. Q., F. Grimaccia, S. Leva, M. Mussetta, and E. Ogliari. 2014. Pitch angle control using hybrid controller for all operating regions of SCIG wind turbine system. Renewable Energy 70:197–203. doi:10.1016/j.renene.2014.03.072.
  • Ehsan, M., W. H. S. Rampen, and S. H. Salter. 2000. Modeling of digital-displacement pump-motors and their application as hydraulic drives for nonuniform loads. Journal of Dynamic Systems, Measurement, and Control 122:210–15. doi:10.1115/1.482444.
  • Ferlito, S., G. Adinolfi, and G. Graditi. 2017. Comparative analysis of data-driven methods online and offline trained to the forecasting of grid-connected photovoltaic plant production. Applied Energy 205:116–29. doi:10.1016/j.apenergy.2017.07.124.
  • Heier, S. 1998. Grid integration of wind energy conversion systems. Chichester: John Wiley and Sons.
  • Horiuchi, N., and T. Kawahito. 2001. Torque and power limitations of variable speed wind turbines using pitch control and generator power control. Power Engineering Society Summer Meeting. Conference Proceedings 1 (July):638–43. doi:10.1109/PESS.2001.970113.
  • Huova, M., M. Linjama, L. Siivonen, T. Deubel, H. Försterling, and E. Stamm. 2018. Novel fine positioning method for hydraulic drives utilizing on/off-valves. In BATH/ASME 2018 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers Digital Collection. doi:10.1115/FPMC2018-8891.
  • Jonkman, J. M. 2007. Dynamics modeling and loads analysis of an offshore floating wind turbine.TP-500-41958, National Renewable Energy Lab, Golden, CO.
  • Kumar, D., and K. Chatterjee. 2017. Design and analysis of artificial bee-colony-based MPPT algorithm for DFIG-based wind energy conversion systems. International Journal of Green Energy 14:416–29. doi:10.1080/15435075.2016.1261709.
  • Laamanen, M. S. A., and M. Vilenius. 2003. Is it time for digital hydraulics. In The Eighth Scandinavian International Conference on Fluid Power. Finland.
  • Linjama, M. 2011. Digital fluid power: State of the art. In the Twelfth Scandinavian International Conference on Fluid Power 2:18–20.
  • Linjama, M., M. Huova, and K. Huhtala. 2016. Model-based force and position tracking control of an asymmetric cylinder with a digital hydraulic valve. International Journal of Fluid Power 17:163–72. doi:10.1080/14399776.2016.1185876.
  • Linjama, M., M. Paloniitty, L. Tiainen, and K. Huhtala. 2015. Mechatronic design of digital hydraulic micro valve package. Procedia Engineering 106:97–107. doi:10.1016/j.proeng.2015.06.013.
  • Manwell, J. F., J. G. McGowan, and A. L. Rogers. 2010. Wind energy explained: Theory, design and application. United Kingdom: John Wiley & Sons.
  • Marugán, A. P., F. P. G. Márquez, J. M. P. Perez, and D. Ruiz-Hernández. 2018. A survey of artificial neural network in wind energy systems. Applied Energy 228:1822–36. doi:10.1016/j.apenergy.2018.07.084.
  • McCloy, D., and R. H. McGuigan. 1964. Some static and dynamic characteristics of poppet valves. In Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, Vol. 179, 199–213. Sage UK: London, England: SAGE Publications.
  • Navarrete, E. C., M. T. Perea, J. J. Correa, R. C. Serrano, and G. R. Moreno. 2019. Expert control systems implemented in a pitch control of wind turbine: A review. IEEE Access 7:13241–59. doi:10.1109/ACCESS.2019.2892728.
  • Paloniitty, M., and M. Linjama. 2018. High-linear digital hydraulic valve control by an equal coded valve system and novel switching schemes. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 232:258–69. doi:10.1177/0959651817750519.
  • Pedersen, N. H., P. Johansen, and T. O. Andersen. 2018a. Optimal control of a wind turbine with digital fluid power transmission. Nonlinear Dynamics 91:591–607. doi:10.1007/s11071-017-3896-0.
  • Pedersen, N. H., P. Johansen, and T. O. Andersen. 2018b. Challenges with respect to control of digital displacement hydraulic units. Modeling, Identification and Control 39:91–105. doi:10.4173/mic.2018.2.4.
  • Qiang Li, Xing Jia Yao, Lei Chen 2004. Analysis on pitch-regulated structure of MW wind turbine group. Journal of Shenyang University of Technology 26:2
  • Ramakrishnan, R., S. S. Hiremath, and M. Singaperumal. 2017. Experimental investigations on regeneration energy and energy management strategy in series hydraulic/electric synergy system. International Journal of Green Energy 14:253–69. doi:10.1080/15435075.2016.1252377.
  • Resor, B. R. 2013. Definition of a 5MW/61.5 m wind turbine blade reference model. SAND-2013-2569, Sandia National Laboratories, USA.
  • Saeedzadeh, A., S. M. Rezaei, and M. Zareinejad 2016. Energy-efficient position control of an actuator in a digital hydraulic system using on/off valve. In 2016 4th International Conference on Robotics and Mechatronics (ICROM), IEEE. doi:10.1109/ICRoM.2016.7886852.
  • Scheidl, R., M. Linjama, and S. Schmidt. 2012. Is the future of fluid power digital? Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 226:721–23. doi:10.1177/0959651811435628.
  • Serre, D. 2002. Matrices: Theory and applications. New York: Springer.
  • Shampine, L. F., M. W. Reichelt, and J. A. Kierzenka. 1999. Solving index-1 DAEs in MATLAB and Simulink. SIAM Review 41:538–52. doi:10.1137/S003614459933425X.
  • Siivonen, L., M. Linjama, M. Huova, and M. Vilenius. 2009. Jammed on/off valve fault compensation with distributed digital valve system. International Journal of Fluid Power 10:73–82. doi:10.1080/14399776.2009.10780979.
  • Sitharthan, R., K. R. Devabalaji, and A. Jees. 2017. An Levenberg–Marquardt trained feed-forward back-propagation based intelligent pitch angle controller for wind generation system. Renewable Energy Focus 22:24–32. doi:10.1016/j.ref.2017.10.003.
  • Venkaiah, P., and B. K. Sarkar. 2020. Hydraulically actuated horizontal axis wind turbine pitch control by model free adaptive controller. Renewable Energy 147:55–68. doi:10.1016/j.renene.2019.08.127.
  • Wilamowski, B. M., N. J. Cotton, O. Kaynak, and G. Dundar. 2008. Computing gradient vector and Jacobian matrix in arbitrarily connected neural networks. IEEE Transactions on Industrial Electronics 55:3784–90. doi:10.1109/TIE.2008.2003319.
  • Winkler, B. 2017. Recent advances in digital hydraulic components and applications. In Proceedings of The Ninth Workshop on Digital Fluid Power. Denmark.
  • Yin, X. X., Y. G. Lin, W. Li, Y. J. Gu, X. J. Wang, and P. F. Lei. 2015. Design, modeling and implementation of a novel pitch angle control system for wind turbine. Renewable Energy 81:599–608. doi:10.1016/j.renene.2015.03.042.
  • Yu, H., and B. M. Wilamowski. 2011. Levenberg-marquardt training. Industrial Electronics Handbook 5:1.
  • Yuan, Y., X. Chen, and J. Tang. 2020. Multivariable robust blade pitch control design to reject periodic loads on wind turbines. Renewable Energy 146:329–41. doi:10.1016/j.renene.2019.06.136.
  • Zhou, G., and J. Si. 1998. Advanced neural-network training algorithm with reduced complexity based on Jacobian deficiency. IEEE Transactions on Neural Networks 9:448–53. doi:10.1109/72.668886.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.