131
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Advanced exergy analysis of a combined gas power cycle with humidification

&
Pages 990-1004 | Received 06 May 2020, Accepted 30 Aug 2020, Published online: 14 Sep 2020

References

  • Agnew, B., A. Anderson, I. W. Potts, T. H. Frost, and M. A. Alabdoadaim. 2003. Simulation of combined brayton and inverse brayton cycles. Applied Thermal Engineering 23 (8):953–63. doi:10.1016/S1359-4311(03)00019-X.
  • Balli, O. 2017. Advanced exergy analyses of an aircraft turboprop engine (TPE). Energy 124:599–612. doi:10.1016/j.energy.2017.02.121.
  • Bolland, O., M. Forde, and B. M. Hande. 1996. Air bottoming cycle: Use of gas turbine waste heat for power generation. Journal of Engineering for Gas Turbines and Power 118 (2):359–68. doi:10.1115/1.2816597.
  • Boyaghchi, F. A., and H. Molaie. 2015. Sensitivity analysis of exergy destruction in a real combined cycle power plant based on advanced exergy method. Energy Conversion and Management 99:374–86. doi:10.1016/j.enconman.2015.04.048.
  • Cengel, Y., and M. Boles. 2014. Thermodynamics: An engineering approach. 8th ed. McGraw Hill, New York, USA.
  • Chiesa, P., G. Lozza, E. Macchi, and S. Consonni. 1995. An assessment of the thermodynamic performance of mixed gas–steam cycles: Part B—water-injected and HAT cycles. Journal of Engineering for Gas Turbines and Power 117 (3):499–508. doi:10.1115/1.2814123.
  • Cziesla, F., G. Tsatsaronis, and Z. Gao. 2006. Avoidable thermodynamic inefficiencies and costs in an externally fired combined cycle power plant. Energy 31 (10–11):1472–89. doi:10.1016/j.energy.2005.08.001.
  • Dincer, I., and A. Z. Sahin. 2004. A new model for thermodynamic analysis of a drying process. International Journal of Heat and Mass Transfer 47 (4):645–52. doi:10.1016/j.ijheatmasstransfer.2003.08.013.
  • Entezari, A., A. Manizadeh, and R. Ahmadi. 2018. Energetical, exergetical and economical optimization analysis of combined power generation system of gas turbine and stirling engine. Energy Conversion and Management 159:189–203. doi:10.1016/j.enconman.2018.01.012.
  • Fallah, M., H. Siyahi, R. Akbarpour Ghiasi, S. M. S. Mahmoudi, M. Yari, and M. A. Rosen. 2016. Comparison of different gas turbine cycles and advanced exergy analysis of the most effective. Energy 116:701–15. doi:10.1016/j.energy.2016.10.009.
  • Frost, T. H., A. Anderson, and B. Agnew. 1997. A hybrid gas turbine cycle (Brayton/ericsson): An alternative to conventional combined gas and steam turbine power plant. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 211 (2):121–31. doi:10.1243/0957650971537042.
  • Ghazikhani, M., I. Khazaee, and S. Vahidifar. 2016. Exergy analysis of two humidification process methods in air-conditioning systems. Energy and Buildings 124:129–40. doi:10.1016/j.enbuild.2016.04.077.
  • Gong, S., and K. Goni Boulama. 2014. Parametric study of an absorption refrigeration machine using advanced exergy analysis. Energy 76:453–67. doi:10.1016/j.energy.2014.08.038.
  • Gong, S., and K. Goni Boulama. 2015. Advanced exergy analysis of an absorption cooling machine: Effects of the difference between the condensation and absorption temperatures. International Journal of Refrigeration 59:224–34. doi:10.1016/j.ijrefrig.2015.07.021.
  • Goodarzi, M. 2016. Usefulness analysis on regenerator and heat exchanger in brayton & inverse brayton cycles at moderate pressure ratio operation. Energy Conversion and Management 126:982–90. doi:10.1016/j.enconman.2016.08.058.
  • Gulen, S. C. 2019. Gas turbine combined cycle power plants. CRC Press, Boca Raton, FL, USA. doi:10.1201/9780429244360..
  • Jenkins, P., M. Cerza, and M. Al Saaid. 2014. Analysis of using the M-cycle regenerative-humidification process on a gas turbine. Journal of Energy and Power Engineering 8:1824–37. doi:10.17265/1934-8975/2014.11.002
  • Jesionek, K., A. Chrzczonowski, P. Ziolkowski, and J. Badur. 2012. Power enhancement of the Brayton cycle by steam utilization. Archives of Thermodynamics 33 (3):36–47. doi:10.2478/v10173-012-0016-x.
  • Jonsson, M., and J. Yan. 2005. Humidified gas turbines—a review of proposed and implemented cycles. Energy 30 (7):1013–78. doi:10.1016/j.energy.2004.08.005.
  • Kayadelen, H. K., and Y. Ust. 2014. Performance and environment as objectives in multi-criterion optimization of steam injected gas turbine cycles. Applied Thermal Engineering 71 (1):184–96. doi:10.1016/j.applthermaleng.2014.06.052.
  • Kelly, S. O., G. Tsatsaronis, and T. Morosuk. 2009. Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts. Energy 34 (3):384–91. doi:10.1016/j.energy.2008.12.007.
  • Lin, J., D. T. Bui, R. Wang, and K. J. Chua. 2018. On the exergy analysis of the counter-flow dew point evaporative cooler. Energy 165:958–71. doi:10.1016/j.energy.2018.10.042.
  • Macchi, E., S. Consonni, G. Lozza, and P. Chiesa. 1995. An assessment of the thermodynamic performance of mixed gas–steam cycles: Part A—Intercooled and steam-injected cycles. Journal of Engineering for Gas Turbines and Power 117 (3):489–98. doi:10.1115/1.2814122.
  • Morosuk, T., and G. Tsatsaronis. 2009. Advanced exergy analysis for chemically reacting systems - Application to a simple open gas-turbine system. International Journal of Thermodynamics 12 (3):105–11. doi:10.5541/ijot.1034000245.
  • Mossi Idrissa, A. K., and K. Goni Boulama. 2017. Investigation of the performance of a combined Brayton/Brayton cycle with humidification. Energy 141:492–505. doi:10.1016/j.energy.2017.09.097.
  • Mossi Idrissa, A. K., and K. Goni Boulama. 2019. Advanced exergy analysis of a combined Brayton/Brayton power cycle. Energy 166:724–37. doi:10.1016/j.energy.2018.10.117.
  • Mossi Idrissa, A. K., and K. Goni Boulama. 2020. Energy and exergy analysis of a combined Brayton/Brayton power cycle with humidification. International Journal of Green Energy 17 (2):149–56. doi:10.1080/15435075.2019.1708367.
  • Omar, A., M. Saghafifar, and M. Gadalla. 2016. Thermo-economic analysis of air saturator integration in conventional combined power cycles. Applied Thermal Engineering 107:1104–22. doi:10.1016/j.applthermaleng.2016.06.181.
  • Ozkan, M. 2015. A comparative study on energy and exergy analyses of a CI engine performed with different multiple injection strategies at part load: Effect of injection pressure. Entropy 17 (1):244–63. doi:10.3390/e17010244.
  • Petrakopoulou, F., G. Tsatsaronis, T. Morosuk, and A. Carassai. 2012. Conventional and advanced exergetic analyses applied to a combined cycle power plant. Energy 41 (1):146–52. doi:10.1016/j.energy.2011.05.028.
  • Saghafifar, M., and M. Gadalla. 2015a. Analysis of maisotsenko open gas turbine bottoming cycle. Applied Thermal Engineering 82:351–59. doi:10.1016/j.applthermaleng.2015.02.032.
  • Saghafifar, M., and M. Gadalla. 2015b. Analysis of maisotsenko open gas turbine power cycle with a detailed air saturator model. Applied Energy 149:338–53. doi:10.1016/j.apenergy.2015.03.099.
  • Salazar-Pereyra, M., M. Toledo-Velazquez, G. T. Eslava, R. Lugo-Leyte, and C. R. Rosas. 2011. Energy and exergy analysis of moist air for application in power plants. Energy and Power Engineering 3 (3):376–81. doi:10.4236/epe.2011.33048.
  • Sohret, Y., E. Acikkalp, A. Hepbasli, and T. H. Karakoc. 2015. Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts. Energy 90:1219–28. doi:10.1016/j.energy.2015.06.071.
  • Szybist, J. P., C. Kalyana, and C. S. Daw. 2012. Analysis of the impact of selected fuel thermochemical properties on internal combustion engine efficiency. Energy & Fuels 26 (5):2798–810. doi:10.1021/ef2019879.
  • Tsatsaronis, G., and M. H. Park. 2002. On avoidable and unavoidable exergy destructions and investment costs in thermal systems. Energy Conversion and Management 43 (9–12):1259–70. doi:10.1016/S0196-8904(02)00012-2.
  • Tsatsaronis, G., and T. Morosuk. 2012. Advanced thermodynamic (Exergetic) analysis. Journal of Physics. Conference Series 395:012160. doi:10.1088/1742-6596/395/1/012160.
  • Wang, Y., and N. Lior. 2007. Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems. Desalination 207 (1–3):243–56. doi:10.1016/j.desal.2006.06.013.
  • Zhao, R., W. Li, W. Zhuge, Y. Zhang, and Y. Yin. 2017. Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery. Applied Energy 185:506–18. doi:10.1016/j.apenergy.2016.10.135.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.