190
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Theoretical assessment of a solar still system equipped with Nano-phase change materials

&
Pages 111-127 | Received 18 May 2020, Accepted 29 Sep 2020, Published online: 11 Nov 2020

References

  • Al-waeli, A. H. A., K. Sopian, M. T. Chaichan, H. A. Kazem, A. Ibrahim, S. Mat, and H. Mohd. 2017. Evaluation of the Nano Fl Uid and nano-PCM based photovoltaic thermal (PVT) system : an experimental study. Energy Conversion and Management151 (July):693–708. doi:10.1016/j.enconman.2017.09.032.
  • Arunkumar, T., R. Jayaprakash, D. Denkenberger, M. S. O. Amimul Ahsan, S. Kumar, H. Tanaka, and H. Ş. Aybar. 2012. An experimental study on a hemispherical solar still. Desalination 286:342–48. doi:10.1016/j.desal.2011.11.047.
  • Bellos, E., Z. Said, and C. Tzivanidis. 2018. The use of nanofluids in solar concentrating technologies. A comprehensive review. Journal of Cleaner Production 196: 84–99. Elsevier Ltd. doi:10.1016/j.jclepro.2018.06.048
  • Bhardwaj, R., M. V. Ten Kortenaar, and R. F. Mudde. 2015. Maximized production of water by increasing area of condensation surface for solar distillation. Applied Energy 154:480–90. doi:10.1016/j.apenergy.2015.05.060.
  • Dashtban, M., and F. F. Tabrizi. 2011. Thermal analysis of a weir-type cascade solar still integrated with PCM storage. Desalination 279 (1–3):415–22. doi:10.1016/j.desal.2011.06.044.
  • Delyannis, E. 2003. Historic background of desalination and renewable energies. Solar Energy 75 (5):357–66. doi:10.1016/j.solener.2003.08.002.
  • Dincer, I., and M. A. Rosen. 2000. Exergy. https://www.elsevier.com/books/exergy/dincer/978-0-08-097089-9.
  • Duffie, J. A., and W. A. Beckman. 2013. Solar Engineering of Thermal Processes. Wiley. https://www.wiley.com/en-us/Solar+Engineering+of+Thermal+Processes%2C+4th+Edition-p-9780470873663.
  • Elfasakhany, A. 2016. Performance assessment and productivity of a simple-type solar still integrated with nanocomposite energy storage system. Applied Energy 183:399–407. doi:10.1016/j.apenergy.2016.09.002.
  • Elsheikh, A. H., S. W. Sharshir, M. Kamal Ahmed Ali, J. Shaibo, M. A. E. Elbager, T. Abdelhamid, C. Du, and Z. Haiou. 2019. Thin film technology for solar steam generation: A new dawn. Solar Energy 177:561–75. Elsevier Ltd. doi:10.1016/j.solener.2018.11.058.
  • Elsheikh, A. H., S. W. Sharshir, M. E. Mostafa, F. A. Essa, and M. Kamal Ahmed Ali. 2018. Applications of nanofluids in solar energy: A review of recent advances. Renewable and Sustainable Energy Reviews 82:3483–502. Elsevier Ltd. doi:10.1016/j.rser.2017.10.108.
  • Faegh, M., and M. Behshad. 2017. Experimental investigation of a solar still equipped with an external heat storage system using phase change materials and heat pipes. Desalination 409:128–35. doi:10.1016/j.desal.2017.01.023.
  • Hachicha, A. A., A. A. Bashria, Z. S. Yousef, and R. Ivette. 2019. A review study on the modeling of high-temperature solar thermal collector systems. Renewable and Sustainable Energy Reviews 112 (September):280–98. doi:10.1016/j.rser.2019.05.056.
  • Kabeel, A. E. 2009. Performance of solar still with a concave wick evaporation surface. Energy 34 (10):1504–09. doi:10.1016/j.energy.2009.06.050.
  • Kabeel, A. E., and M. Abdelgaied. 2016. Improving the performance of solar still by using PCM as a thermal storage medium under Egyptian conditions. DES 383:22–28. doi:10.1016/j.desal.2016.01.006.
  • Kabeel, A. E., M. Abdelgaied, and M. Mahgoub. 2016. The performance of a modi Fi Ed solar still using hot air injection and PCM. DES 379:102–07. doi:10.1016/j.desal.2015.11.007.
  • Kabeel, A. E., M. A. Teamah, M. Abdelgaied, and G. B. Abdel Aziz. 2017. Modified pyramid solar still with V-corrugated absorber plate and PCM as a thermal storage medium. Journal of Cleaner Production 161:881–87. doi:10.1016/j.jclepro.2017.05.195.
  • Kalogirou, S. A. 2005. Seawater desalination using renewable energy sources. Progress in Energy and Combustion Science, 31:242–81. doi:10.1016/j.pecs.2005.03.001.
  • Karimi Estahbanati, M. R., A. Ahsan, M. Feilizadeh, K. Jafarpur, S. S. Ashrafmansouri, and M. Feilizadeh. 2016. Theoretical and experimental investigation on internal reflectors in a single-slope solar still. Applied Energy 165:537–47. doi:10.1016/j.apenergy.2015.12.047.
  • Kumar, S., and G. N. Tiwari. 1996. Estimation of convective mass transfer in solar distillation systems. Solar Energy 57 (6):459–64. doi:10.1016/S0038-092X(96)00122-3.
  • Morcos, V. H. 1994. Optimum tilt angle and orientation for solar collectors in Assiut, Egypt. Renewable Energy 4 (3):291–98. doi:10.1016/0960-1481(94)90032-9.
  • Ranjan, K. R., S. C. Kaushik, and N. L. Panwar. 2016. Energy and exergy analysis of passive solar distillation systems. International Journal of Low-Carbon Technologies 11 (2):211–21. doi:10.1093/ijlct/ctt069.
  • Raza, G., Y. Shi, and Y. Deng. 2016. Expanded graphite as thermal conductivity enhancer for paraffin wax being used in thermal energy storage systems. In Proceedings of 2016 13th International Bhurban Conference on Applied Sciences and Technology, IBCAST 2016, 1–12. Islamabad, Pakistan: Institute of Electrical and Electronics Engineers Inc. doi:10.1109/IBCAST.2016.7429846.
  • Said, Z., S. Arora, and E. Bellos. 2018. A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics. Renewable and Sustainable Energy Reviews 94:302–16. Elsevier Ltd. doi:10.1016/j.rser.2018.06.010.
  • Said, Z., T. I. E. Hanin Zeyad, and M. El Haj Assad. 2019. Nano-Enhanced PCM for Energy Storage. In 2019 Advances in Science and Engineering Technology International Conferences, ASET 2019.Dubai, United Arab Emirates: Institute of Electrical and Electronics Engineers Inc. doi:10.1109/ICASET.2019.8714218.
  • Sarhaddi, F., F. F. Tabrizi, H. A. Zoori, and S. Amir Hossein Seyed Mousavi. 2017. Comparative study of two weir type cascade solar stills with and without PCM storage using energy and exergy analysis. Energy Conversion and Management 133 (February):97–109. doi:10.1016/j.enconman.2016.11.044.
  • Sharon, H., K. S. Reddy, D. Krithika, and L. Philip. 2017. Experimental performance investigation of tilted solar still with basin and wick for distillate quality and enviro-economic aspects. Desalination 410:30–54. doi:10.1016/j.desal.2017.01.035.
  • Sharshir, S. W., A. H. Elsheikh, M. A. E. Elbager, M. Kamal Ahmed Ali, R. Sathyamurthy, A. E. Kabeel, J. Zang, and Y. Nuo. 2019. Improving the solar still performance by using thermal energy storage materials: A review of recent developments. Desalination and Water Treatment 165:1–15. doi:10.5004/dwt.2019.24362.
  • Sharshir, S. W., G. Peng, W. Lirong, F. A. Essa, A. E. Kabeel, and N. Yang. 2017. The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance. Applied Energy 191:358–66. doi:10.1016/j.apenergy.2017.01.067.
  • Singh, H. N., and G. N. Tiwari. 2004. Monthly performance of passive and active solar stills for different indian climatic conditions. Desalination 168 (August):145–50. doi:10.1016/j.desal.2004.06.180.
  • Tanaka, H., and Y. Nakatake. 2007. Improvement of the tilted wick solar still by using a flat plate reflector. Desalination 216 (1–3):139–46. doi:10.1016/j.desal.2006.12.010.
  • Tanaka, H., and Y. Nakatake. 2009. Increase in distillate productivity by inclining the flat plate external reflector of a tilted-wick solar still in winter. Solar Energy 83 (6):785–89. doi:10.1016/j.solener.2008.12.001.
  • Tiwari, G. N., and L. Sahota. 2017. Advanced solar-distillation systems. Green Energy and Technology. Singapore: Springer Singapore. doi:10.1007/978-981-10-4672-8.
  • Winfred Rufuss, D., D., . L. Suganthi, S. Iniyan, and P. A. Davies. 2018. Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity. Journal of Cleaner Production 192 (August):9–29. doi:10.1016/j.jclepro.2018.04.201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.