291
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Thermodynamic analysis of a gamma-type stirling engine driven by Scotch Yoke mechanism

ORCID Icon
Pages 144-155 | Received 17 Jul 2020, Accepted 29 Sep 2020, Published online: 08 Nov 2020

References

  • Abuelyamen, A., and R. Ben-Mansour. 2018. Energy efficiency comparison of Stirling engine types (α, β, and γ) using detailed CFD modeling. International Journal of Thermal Sciences 132:411–23. doi:10.1016/j.ijthermalsci.2018.06.026.
  • Abuelyamen, A., R. Ben-Mansour, H. Abualhamayel, and E. M. Mokheimer. 2017. Parametric study on beta-type Stirling engine. Energy Conversion and Management 145:53–63.
  • Aksoy, F., and C. Cinar. 2013. Thermodynamic analysis of a beta-type Stirling engine with rhombic drive mechanism. Energy Conversion and Management 75:319–24. doi:10.1016/j.enconman.2013.06.043.
  • Aksoy, F., H. Karabulut, C. Cınar, H. Solmaz, Y. O. Ozgören, and A. Uyumaz. 2015. Thermal performance of a Stirling engine powered by a solar simulator. Applied Thermal Engineering 86:161–67. doi:10.1016/j.applthermaleng.2015.04.047.
  • Aksoy, F., H. Solmaz, H. Karabulut, C. Cınar, Y. O. Ozgoren, and S. Polat. 2016. A thermodynamic approach to compare the performance of rhombic-drive and crank-drive mechanisms for a beta-type Stirling engine. Applied Thermal Engineering 93:359–67. doi:10.1016/j.applthermaleng.2015.09.105.
  • Alfarawi, S. 2020. Thermodynamic analysis of rhombic‐driven and crank‐driven beta‐type Stirling engines. International Journal of Energy Research 44 (7):pp.5596–5608. doi:10.1002/er.5309.
  • Alfarawi, S., R. Al-Dadah, and S. Mahmoud. 2016a. Enhanced thermodynamic modelling of a gamma-type Stirling engine. Applied Thermal Engineering 106:1380–90. doi:10.1016/j.applthermaleng.2016.06.145.
  • Alfarawi, S., R. Al-Dadah, and S. Mahmoud. 2016b. Influence of phase angle and dead volume on gamma-type Stirling engine power using CFD simulation. Energy Conversion and Management 124:130–40. doi:10.1016/j.enconman.2016.07.016.
  • Altın, M., M. Okur, D. Ipci, S. Halis, and H. Karabulut. 2018. Thermodynamic and dynamic analysis of an alpha type Stirling engine with Scotch Yoke mechanism. Energy 148:855–65.
  • Calam, A., Y. Icingür, H. Solmaz, and H. Yamık. 2015. A comparison of engine performance and the emission of fusel oil and gasoline mixtures at different ignition timings. International Journal of Green Energy 12 (8):767–72. doi:10.1080/15435075.2013.849256.
  • Campos, M. C., J. V. C. Vargas, and J. C. Ordonez. 2012. Thermodynamic optimization of a Stirling engine. Energy 44 (1):902–10. doi:10.1016/j.energy.2012.04.060.
  • Cheng, C. H., and Y. F. Chen. 2017. Numerical simulation of thermal and flow fields inside a 1-kW beta-type Stirling engine. Applied Thermal Engineering 121:554–61. doi:10.1016/j.applthermaleng.2017.04.105.
  • Chengi, C. H., and Y. J. Yu. 2012. Combining dynamic and thermodynamic models for dynamic simulation of a beta-type Stirling engine with rhombic-drive mechanism. Renewable Energy 37 (1):161–73. doi:10.1016/j.renene.2011.06.013.
  • Cınar, C., and H. Karabulut. 2005. Manufacturing and testing of a gamma type Stirling engine. Renewable Energy 30 (1):57–66. doi:10.1016/j.renene.2004.04.007.
  • Costea, M., S. Petrescu, and C. Harman. 1999. The effect of irreversibilities on solar Stirling engine cycle performance. Energy Conversion and Management 40 (15–16):1723–31. doi:10.1016/S0196-8904(99)00065-5.
  • Finkelstein, T. 1975. Computer analysis of Stirling engines. Advances in Cryogenic Engineering 20:269–82.
  • Gheith, R., H. Hachem, F. Aloui, and S. B. Nasrallah. 2015. Experimental and theoretical investigation of Stirling engine heater: Parametrical optimization. Energy Conversion and Management 105:285–93. doi:10.1016/j.enconman.2015.07.063.
  • Hirata, K., and S. Iwamoto. 1999. Study on design and performance prediction methods for miniaturized Stirling engine. SAE Technical Paper, 1999–01–3308.
  • Ipci, D., and H. Karabulut. 2018. Thermodynamic and dynamic analysis of an alpha type Stirling engine and numerical treatment. Energy Conversion and Management 169:34–8944. doi:10.1016/j.enconman.2018.05.044.
  • Karabulut, H., C. Cınar, E. Oztürk, and H. S. Yücesu. 2010. Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism. Renewable Energy 35 (1):138–43. doi:10.1016/j.renene.2009.04.023.
  • Karabulut, H., H. S. Yücesu, and C. Cinar. 2006. Nodal analysis of a Stirling engine with concentric piston and displacer. Renewable Energy 31 (13):2188–97. doi:10.1016/j.renene.2005.12.009.
  • Lai, X., M. Yu, R. Long, Z. Liu, and W. Liu. 2019. Dynamic performance analysis and optimization of dish solar Stirling engine based on a modified theoretical model. Energy 183:573–83. doi:10.1016/j.energy.2019.06.131.
  • Li, T., D. Tang, Z. Li, J. Du, T. Zhou, and Y. Jia. 2012. Development and test of a Stirling engine driven by waste gases for the micro-CHP system. Applied Thermal Engineering 33:119–23. doi:10.1016/j.applthermaleng.2011.09.020.
  • Martini, W. R. 1978. Stirling engine design manual. US Department of Energy, Office of Conservation and Solar Applications, Division of Transportation Energy Conservation.
  • Schock, A. 1978. Stirling engine nodal analysis program. Journal of Energy 2 (6):354–62. doi:10.2514/3.47987.
  • Wang, J., C. Pan, K. Luo, L. Chen, J. Wang, and Y. Zhou. 2018. Thermal analysis of Stirling thermocompressor and its prospect to drive refrigerator by using natural working fluid. Energy Conversion and Management 177:280–91. doi:10.1016/j.enconman.2018.09.068.
  • Yılmaz, E. 2019. Investigation of the effects of diesel-fusel oil fuel blends on combustion, engine performance and exhaust emissions in a single cylinder compression ignition engine. Fuel 255:115741. doi:10.1016/j.fuel.2019.115741.
  • Zhou, Z., and M. Carbajales-Dale. 2018. Assessing the photovoltaic technology landscape: Efficiency and energy return on investment (EROI). Energy & Environmental Science 11 (3):603–08. doi:10.1039/C7EE01806A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.