301
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Performance evaluation of solar based combined pre-compression supercritical CO2 cycle and organic Rankine cycle

ORCID Icon &
Pages 172-186 | Received 19 Jul 2020, Accepted 09 Oct 2020, Published online: 22 Nov 2020

References

  • Abdullah, A., Al-Zahrani, and I. Dincer. 2018. Energy and exergy analyses of a parabolic trough solar power plant using carbon dioxide power cycle. Energy Conversion and Management 158:476–88. doi:10.1016/j.enconman.2017.12.071.
  • Abid, M., V. O. Adebayo, and U. Atikol. 2019. Energetic and exegetic analysis of a novel multi-generation system using solar power tower. International Journal of Exergy 29:211. doi:10.1504/IJEX.2019.100364.
  • Ahn, Y., S. J. Bae, M. Kim, S. K. Cho, S. Baik, J. I. Lee, and J. E. Cha. 2015. Review of supercritical CO2 power cycle technology and current status of research and development. Nuclear Engineering Technology 47:647–61. doi:10.1016/j.net.2015.06.009.
  • Alsagri, A. S., A. Chiasson, and M. Gadalla. 2018. Viability assessment of a concentrated solar power tower with a supercritical CO2 Brayton cycle power plant. Journal of Solar Energy Engineering. doi:10.1115/1.4043515.
  • Al-Sulaiman, F. A. 2014. Exergy analysis of parabolic trough solar collectors integrated with combined steam and organic Rankine cycles. Energy Conversion and Management 77:441–49. doi:10.1016/j.enconman.2013.10.013.
  • Al-Sulaiman, F. A., and M. Atif. 2015. Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower. Energy 82:61–71. doi:10.1016/j.energy.2014.12.070.
  • Barlev, D., R. Vidu, and P. Stroeve. 2011. Innovation in concentrated solar power. Solar Energy Materials and Solar Cells 95 (10):2703–25. doi:10.1016/j.solmat.2011.05.020.
  • Bejan, A., D. W. Kearney, and F. Kreith. 1981. Second law analysis and synthesis of solar collector systems. Journal of Solar Energy Engineering, Transactions of the ASME 103:23–28. doi:10.1115/1.3266200.
  • Besarati, S. M., and D. Y. Goswami. 2014. Analysis of advanced supercritical carbon dioxide power cycles with a Bottoming cycle for concentrating solar power applications. Journal of Solar Energy Engineering 136:010904-1-7. doi:10.1115/1.4025700.
  • Bishoyi, D., and K. Sudhakar. 2017. Modeling and performance simulation of 100 MW PTC based solar thermal power plant in Udaipur India. Case Studies in Thermal Engineering 10:216–26. doi:10.1016/j.csite.2017.05.005.
  • Blanco, M., and L. R. Santigosa. 2017. Advances in concentrating solar thermal research and technology. Woodhead publishing series in energy (Elsevier) Kidligton, United Kingdom. ISBN: 978-0-08-100516-3.
  • Calm, J. M. 1994. Referegerant safety. ASHRAE Journal 36 (7):17–26.
  • Cengel, Y. A., and M. A. Boles. 2004. Thermodynamics an engineering approach. 5th ed. New York, USA: McGraw-Hill publication.
  • Chacartegui, R., J. M. Muñoz, D. Escalona, D. Sánchez, B. Monje, and T. Sánchez. 2011. Alternative cycles based on carbon dioxide for central receiver solar power plants. Applied Thermal Engineering 31:872–79. doi:10.1016/j.applthermaleng.2010.11.008.
  • Chen, Y., and P. Lundqvist. 2011. The CO2 transcritical power cycle for low grade heat reconery discussion on temperature profiles in system heat exchangers. Proceedings of the ASME Power Conference POWER July 12–14, Denver, Colorado, USA.
  • Clemente, S., D. Micheli, M. Reini, and R. Taccani. 2013. Bottoming organic Rankine cycle for a small scale gas turbine: A comparison of different solutions. Applied Energy 106:355–64. doi:10.1016/j.apenergy.2013.02.004.
  • Dai, Y., J. Wang, and L. Gao. 2009. Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energy Conversion and Management 50:576–82. doi:10.1016/j.enconman.2008.10.018.
  • Dostal, V. 2004.A supercritical carbon dioxide cycle for next generation nuclear reactors. Thesis submitted in Massachusetts institute of technology.USA
  • Farges, O., J. Bézian, and M. El-Hafi. 2018. Global optimization of solar power tower systems using a Monte Carlo algorithm: Application to a redesign of the PS10 solar thermal power plant. Renewable Energy 119:345–53. doi:10.1016/j.renene.2017.12.028.hal-01660563.
  • Fuqianga, W., C. Ziminga, T. Jianyua, Y. Yuanc, S. Yongc, and L. Linhua. 2017. Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review. Renewable and Sustainable Energy Reviews 79:1314–28. doi:10.1016/j.rser.2017.05.174.
  • Guo, C., D. D. Xiaoze, Y. Goswami, and L. Yang. 2016. Investigation on working fluids selection for organic rankine cycles with low-temperature heat sources. International Journal of Green Energy 13 (6):556–65. doi:10.1080/15435075.2014.979491.
  • Ho, C. K., and B. D. Iverson. 2014. Review of high-temperature central receiver designs for concentrating solar power. Renewable Sustainable Energy Reviews 29:835–46. doi:10.1016/j.rser.2013.08.099.
  • Hoang, A. T. 2018. Waste heat recovery from diesel engines based on Organic Rankine Cycle. Applied Energy 231:138–66. doi:10.1016/j.apenergy.2018.09.022.
  • Kabira, E., P. Kumar, S. Kumar, A. A. Adelodund, and K. Kime. 2018. Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews 82:894–900. doi:10.1016/j.rser.2017.09.094.
  • Kalogirou, S. A. 2004. Solar thermal collectors and applications. Progress in Energy and Combustion Science 30 (3):231–95.
  • Kalra, C., G. Becquin, J. Jackson, A. L. Laursen, H. Chen, K. Myers, A. Hardy, H. Klockow, and J. Zia.2012.High-potential power cycles & working fluids for next generation binary supercritical organic Rankine cycle for enhanced geothermal systems. Proceedings, Thirty-Seventh Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California.
  • Khan, Y., and R. S. Mishra. 2020. Parametric (exergy-energy) analysis of parabolic trough solar collector-driven combined partial heating supercritical CO2 cycle and organic Rankine cycle. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2020.1788676.
  • Khatoon, S., and M. Kim. 2020. Performance analysis of carbon dioxide based combined power cycle for concentrating solar power. Energy Conversion and Management 20. doi:10.1016/j.enconman.2019.112416.
  • Kim, M. S., Y. Ahn, B. Kim, and J. I. Lee. 2016a. Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle. Energy 111:893–99. doi:10.1016/j.energy.2016.06.014.
  • Kim, Y. M., D. G. Shin, C. G. Kim, and G. B. Cho. 2016b. Single-loop organic Rankine cycles for engine waste heat recovery using both low- and high-temperature heat sources. Energy 96:482–94. doi:10.1016/j.energy.2015.12.092.
  • Klein, S. A.,2019. Engineering equation solver (EES), Academic Commercial V7.714. F-Chart Software. www.fChart.com.
  • Koc, Y., H. Yagli, and A. Koc. 2019. Exergy analysis and performance improvement of a subcritical/supercritical Organic Rankine Cycle (ORC) for exhaust gas waste heat recovery in a biogas fuelled Combined Heat and Power (CHP) 520 engine through the use of regeneration. Energies 12 (4):575. doi:10.3390/en12040575.
  • Kulhanek, M., and V. Dostal. 2011 Supercritical carbon dioxide cycles thermodynamic analysis and comparison I. Proc. Scco2 Power Cycle Symp, Prague. 2011.
  • Li, J., Z. Ge, Y. Duan, Z. Yang, and Q. Liu. 2018. Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles. Applied Energy 217:409–21. doi:10.1016/j.apenergy.2018.02.096.
  • Maa, Y., T. Morozyukb, M. Liuc, J. Yanc, and J. Liua. 2019. Optimal integration of recompression supercritical CO2 Brayton cycle with main compression intercooling in solar power tower system based on exergoeconomic approach. Applied Energy 242:1134–54. doi:10.1016/j.apenergy.2019.03.155.
  • Maali, R., and T. Khir. 2020. Performance analysis of different orc power plant configurations using solar and geothermal heat sources. International Journal of Green Energy 17:349–62. doi:10.1080/15435075.2020.1731517.
  • Neises, T. and C. Turchi. 2014. A comparison of supercritical carbon dioxide power cycle configurations with an emphasis on CSP applications. Energy Procedia 49:1187–1196
  • Neises, T., and C. Turchi. 2019. Supercritical carbon dioxide power cycle design and configuration optimization to minimize levelized cost of energy of molten salt power towers operating at 650 °C. Solar Energy 181:27–36. doi:10.1016/j.solener.2019.01.078.
  • Parrott, J. E. 1978. Theoretical upper limit to the conversion efficiency of solar energy. Solar Energy 21:227–29. doi:10.1016/0038-092X(78)90025-7.
  • Polimeni, S., M. Binotti, L. Moretti, and G. Manzolini. 2018. Comparison of sodium and KCl-MgCl2 as heat transfer fluids in CSP solar tower with sCO2 power cycles. Solar Energy 162:51024. doi:10.1016/j.solener.2018.01.046.
  • Reyes-Belmonte, M. A., A. Sebastián, and M. Romero. 2016. Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant. Energy 112:17–27. doi:10.1016/j.energy.2016.06.013.
  • Saleh, B., and A. A. Aly. 2017. Screening of organic working fluids for a combined Rankine-refrigeration cycle driven by renewable energy. International Journal of Applied Engineering Research 12 (20):9575–86.
  • Saleh, B. A. A. A., A. F. Alogla, A. M. Aljuaid, M. M. Alharthi, K. I. E. Ahmed, and Y. S. Hamed. 2019. Performance investigation of organic Rankine-vapor compression refrigeration integrated system activated by renewable energy. Mechanics & Industry 20:206. doi:10.1051/meca/2019023.
  • Sarver, T., A. Al-Quraghuli, and L. L. Kazmerski. 2013. A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renewable and Sustainable Energy Reviews 22:698–33. doi:10.1016/j.rser.2012.12.065.
  • Shaaban, S. 2016. Analysis of an integrated solar combined cycle with steam and organic Rankine cycles as bottoming cycles. Energy Conversion and Management 126:1003–12. doi:10.1016/j.enconman.2016.08.075.
  • Shukla, A. K., A. Sharma, M. Sharma, and G. Nandan. 2018. Thermodynamic investigation of solar energy-based triple combined power cycle. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2018.1544995.
  • Singh, H., and R. S. Mishra. 2018a. Performance analysis of solar parabolic trough collectors driven combined supercritical CO2 and organic Rankine cycle. Engineering Science and Technology, an International Journal 21:451–44. doi:10.1016/j.jestch.2018.03.015.
  • Song, J., X. Li, X. Ren, and C. Gu. 2018. Performance analysis and parametric optimization of supercritical carbon dioxide (S-CO2) cycle with bottoming Organic Rankine Cycle (ORC). Energy 143:406–16. doi:10.1016/j.energy.2017.10.136.
  • Tian, Y., and C. Zhao. 2013. A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy 104:538–53. doi:10.1016/j.apenergy.2012.11.051.
  • Wang, X., E. K. Levy, C. Pan, C. Wang, E. Romero, A. Banarjee, C. Rubio-Maya, and L. Pan. 2019. Working fluid selection for organic Rankine cycle power generation using hot produced supercritical CO2 from a geothermal reservoir. Applied Thermal Engineering 149:1287–304. doi:10.1016/j.applthermaleng.2018.12.112.
  • Wang, X., Q. Liu, J. Lei, W. Han, and H. Jin. 2018. Investigation of thermodynamic performances for two-stage recompression supercritical CO2 Brayton cycle with high temperature thermal energy storage system. Energy Conversion Management 165:477–87. doi:10.1016/j.enconman.2018.03.068.
  • Wei, L., Y. Zhang, Y. Mu, X. Yang, and X. Hu. 2014. Simulation and experimental research of a low-grade energy conversion system using organic Rankine cycles. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36 (5):537–46. doi:10.1080/15567036.2010.544001.
  • Xu, X., X. Wang, P. Li, Y. Li, Q. Hao, and B. Xiao. 2018. Experimental test of properties of KCl–MgCl2 eutectic molten salt for heat transfer and thermal storage fluid in concentrated solar power systems. Journal of Solar Energy Engineering 140 (5):051011. doi:10.1115/1.4040065.
  • Yagli, H. 2020. Examining the receiver heat loss, parametric optimization and exergy analysis of a solar power tower (SPT) system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2020.1748765.
  • Yang, J., Z. Yang, and Y. Duan. 2020. Part-load performance analysis and comparison of supercritical CO2 Brayton cycles. Energy Conversion and Management 214:112832. doi:10.1016/j.enconman.2020.112832.
  • Yu., W., Q. Gong, D. Gao, G. Wang, H. Su, and X. Li. 2020. Thermodynamic Analysis of Supercritical Carbon Dioxide Cycle for Internal Combustion Engine Waste Heat Recovery. Processes 8:216. doi:10.3390/pr8020216
  • Zhai, H., Y. J. Dai, J. Y. Wu, and R. Z. Wang. 2009. Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas. Applied Energy 86:1395–04. doi:10.1016/j.apenergy.2008.11.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.