774
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Experimental and numerical research of liquid contact angles on solid surfaces under evaporation conditions: a review

, &
Pages 319-335 | Received 04 Aug 2020, Accepted 09 Nov 2020, Published online: 28 Dec 2020

References

  • Arroiabe. P., Martinez-Urrutia. A., Peña. X., and Mounir Bou-Ali M. 2018. Influence of the contact angle on the wettability of horizontal-tube falling films in the droplet and jet flow modes. International Journal of Refrigeration 9012–21. doi:10.1016/j.ijrefrig.2018.04.003.
  • Barash, L. Y. 2016. Marangoni convection in an evaporating droplet: Analytical and numerical descriptions. International Journal of Heat and Mass Transfer 102:445–54. doi:10.1016/j.ijheatmasstransfer.2016.06.042..
  • Barmi, M. R., and C. D. Meinhart. 2014. Convective flows in evaporating sessile droplets. The Journal of Physical Chemistry. B 118 (9):2414–21. doi:10.1021/jp408241f..
  • Bourges, M. C., and M. E. R. Shanahan. 1995. Influence of evaporation on contact angle. Langmuir 11 (7):2820–29. doi:10.1021/la00007a076.
  • Brutin, D., B. Sobac, F. Rigollet, C. Le Niliot. 2011. Infrared visualization of thermal motion inside a sessile drop deposited onto a heated surface. Experimental Thermal and Fluid Science 35 (3):521–30. doi:10.1016/j.expthermflusci.2010.12.004.
  • Brutin, D., and V. Starov. 2018. Recent advances in droplet wetting and evaporation. Chemical Society Reviews 47 (2):558–85. doi:10.1039/c6cs00902f.
  • Calvo, R., E. Gomez, and R. Domingo. 2013. Circle fitting from the polarity transformation regression. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology 37 (4):908–17. doi:10.1016/j.precisioneng.2013.05.010.
  • Castanet, G., A. Labergue, and F. Lemoine. 2011. Internal temperature distributions of interacting and vaporizing droplets. International Journal of Thermal Sciences 50 (7):1181–90. doi:10.1016/j.ijthermalsci.2011.02.001.
  • Cazabat, A. M., and G. Guéna. 2010. Evaporation of macroscopic sessile droplets. Soft Matter 6 (12):2591–612. doi:10.1039/B924477H.
  • Chai, J., S. Liu, and X. Yang. 2009. Molecular dynamics simulation of wetting on modified amorphous silica surface. Applied Surface Science 255 (22):9078–84. doi:10.1016/j.apsusc.2009.06.109.
  • Chen, J. N., X. L. Ouyang, Z. Zhang, and P. X. Jiang. 2016. A numerical model for simulating the droplet flow and evaporation. Journal of Engineering Thermophysics 37 (3):637–42.
  • Chen, T., C. C. Hu, Y. Fang, and Z. C. Liang. 2017a. A method for measuring contact angles of droplets. Laser & Optoelectronics Progress 54 (8):295–99. doi:10.3788/LOP54.082402.
  • Chen, X., X. Wang, P. G. Chen, Q. Liu. 2017b. Thermal effects of substrate on Marangoni flow in droplet evaporation: Response surface and sensitivity analysis. International Journal of Heat and Mass Transfer 113:354–65. doi:10.1016/j.ijheatmasstransfer.2017.05.076.
  • Deen, J., W. Sempels, R. De Dier, J. Vermant, P. Dedecker, J. Hofkens, R. K. Neely. 2015. Combing of genomic DNA from droplets containing picograms of material. ACS Nano 9 (1):809–16. doi:10.1021/nn5063497.
  • Dehaeck, S., A. Rednikov, and P. Colinet. 2014. Vapor-based interferometric measurement of local evaporation rate and interfacial temperature of evaporating droplets. Langmuir 30 (8):2002–08. doi:10.1021/la404999z.
  • Deng, J. J., J. Xu, and J. S. Lu. 2020. Evaporation capacity and evaporation time of stationary liquid methane saturated single droplet. Gas & Heat 40 (7):6–11+44-45. doi:10.13608/j.cnki.1000-4416.2020.07.012..
  • Dong, B. H., F. X. Wang, X. Y. Zhang,and X. Jiang. 2020. 3D lattice Boltzmann simulation of droplet evaporation on patterned surfaces: Study of pinning–depinning mechanism. International Journal of Multiphase Flow 125. doi:10.1016/j.ijmultiphaseflow.2020.103218.
  • Dong, C. S., L. Lu, and R. H. Qi. 2017. Model development of heat/mass transfer for internally cooled dehumidifier concerning liquid film shrinkage shape and contact angles. Building and Environment 114:11–22. doi:10.1016/j.buildenv.2016.12.001..
  • Dong, C. S., R. H. Qi, L. Zhang, and L. Lu. 2019. Performance enhancement of solar-assisted liquid desiccant dehumidifiers using super-hydrophilic surface. Energy and Buildings 199:461–71. doi:10.1016/j.enbuild.2019.07.027.
  • Drelich, J. W., L. Boinovich, E. Chibowski, C. Della Volpe, L. Hołysz, A. Marmur, S. Siboni. 2020. Contact angles: History of over 200 years of open questions. Surface Innovations 8 (1–2):3–27. doi:10.1680/jsuin.19.00007.
  • Dunand, P., G. Castanet, and F. Lemoine. 2012. A two-color planar LIF technique to map the temperature of droplets impinging onto a heated wall. Experiments in Fluids 52 (4):843–56. doi:10.1007/s00348-011-1131-1.
  • Eimann, F., S. Zheng, C. Philipp, A. H. Omranpoor, U. Gross. 2020. Dropwise condensation of humid air - Experimental investigation and modelling of the convective heat transfer. International Journal of Heat and Mass Transfer 154:119734. doi:10.1016/j.ijheatmasstransfer.2020.119734.
  • El Fil, B., G. Kini, and S. Garimella. 2020. A review of dropwise condensation: Theory, modeling, experiments, and applications. International Journal of Heat and Mass Transfer 160:120172. doi:10.1016/j.ijheatmasstransfer.2020.120172.
  • Erbil, H. Y. 2012. Evaporation of pure liquid sessile and spherical suspended drops: A review. Advances in Colloid and Interface Science 170 (1):67–86. doi:10.1016/j.cis.2011.12.006.
  • Erbil, H. Y. 2014. The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: A review. Surface Science Reports 69 (4):325–65. doi:10.1016/j.surfrep.2014.09.001.
  • Fan, L. J., and X. Huang. 2010. Test research of hydrophilic membrane outside heat exchange tube of tubular indirect evaporative cooler (TIEC). Journal of Xian Polytechnic University 24 (4):458–62. doi:10.13338/j..1674-649x.2010.04.017.
  • Fang, K. N., L. G. Shan, and J. J. Yuan. 2019. LBM numerical simulation of droplet spreading and evaporation on surfaces with different wettability. Advances in New and Renewable Energy 7 (4):346–53. doi:10.3969/j..2095-560X.2019.04.007.
  • Gao, M., P. Kong, and L. X. Zhang. 2018. Character of sessile droplets evaporation on hydrophilic and hydrophobic heating surface with constant heat fluxes. CIESC Journal 69 (7):2979–84. doi:10.11949/j..0438-1157.20171684.
  • Geoffroy, G., and A. Cazabat. 2007. Receding contact angle in the situation of complete wetting: Experimental check of a model used for evaporating droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects 300(3), 307–314.
  • Glover, A. R., S. M. Skippon, and R. D. Boyle. 1995. Interferometric laser imaging for droplet sizing: A method for droplet-size measurement in sparse spray systems. Applied Optics 34 (36):8409–21. doi:10.1364/ao.34.008409.
  • Gong, J. M., N. Oshima, and Y. Tabe. 2019. Spurious velocity from the cutoff and magnification equation in free energy-based LBM for two-phase flow with a large density ratio. Computers and Mathematics with Applications 78 (4):1166–81. doi:10.1016/j.camwa.2016.08.033.
  • Gong, W., Y. Y. Yan, S. Chen, E. Wright. 2018. A modified phase change pseudopotential lattice Boltzmann model. International Journal of Heat and Mass Transfer 125:323–29. doi:10.1016/j.ijheatmasstransfer.2018.04.090.
  • Guan, X. D., and J. S. Di. 2017. A droplet contact angle estimation method based on balance principle. Acta Metrologica Sinica 38 (2):159–63. doi:10.3969/j..1000-1158.2017.02.07.
  • Guéna, G., P. Allançon, and A. Cazabat. 2007. Receding contact angle in the situation of complete wetting: Experimental check of a model used for evaporating droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects 300 (3):307–14. doi:10.1016/j.colsurfa.2007.02.009.
  • Hagiwara, Y., S. Sakamoto, M. Tanaka, and K. Yoshimura. 2002. PTV measurement on interaction between two immiscible droplets and turbulent uniform shear flow of carrier fluid. Experimental Thermal and Fluid Science 26 (2–4):245–52. doi:10.1016/s0894-1777(02)00133-4.
  • Halverson, J. D., C. Maldarelli, A. Couzis, J. Koplik. 2008. A molecular dynamics study of the motion of a nanodroplet of pure liquid on a wetting gradient. The Journal of Chemical Physics 129 (16):16. doi:10.1063/1.2996503.
  • Hamamoto, Y., J. R. E. Christy, and K. Sefiane. 2012. The flow characteristics of an evaporating ethanol water mixture droplet on a glass substrate. Journal of Thermal Science and Technology 7 (3):425–36. doi:10.1299/jtst.7.425.
  • Hsieh, S. S., H. Y. Leu, and H. H. Liu. 2015. Spray cooling characteristics of nanofluids for electronic power devices. Nanoscale Research Letters 10:1–16. doi:10.1186/s11671-015-0793-7.
  • Hu, H., and R. G. Larson. 2005. Analysis of the microfluid flow in an evaporating sessile droplet. Langmuir 21 (9):3963–71. doi:10.1021/la047528s.
  • Hu, Y. C., X. R. Zhang, L. Huang,Y. Wei, X. M. Su, and Q. Zhou. 2017. Flow and mass transfer laws in drying droplets: Theory and applications. Materials Reports 31 (7):1–5+18. doi:10.11896/j..1005-023X.2017.07.001.
  • Huang, J. L. 2019. Heat and mass transfer characteristics of falling film absorption process in absorption power circulation tube. Master diss., Kunming University of Science and Technology.
  • Jaroslaw, W. D. 2019. Contact angles: From past mistakes to new developments through liquid-solid adhesion measurements. Advances in Colloid and Interface Science 267:1–14. doi:10.1016/j.cis.2019.02.002.
  • Jia, W., and H. H. Qiu. 2003. Experimental investigation of droplet dynamics and heat transfer in spray cooling. Experimental Thermal and Fluid Science 27 (7):829–38. doi:10.1016/S0894-1777(03)00015-3.
  • Jin, Z. Y., and H. Hu. 2012. Effect of surface temperature on droplet evaporation. Journal of Tongji University (Natural Science) 40 (3):495–98. doi:10.3969/j..0253-374x.2012.03.028.
  • Korobeinichev, O. P., A. G. Shmakov, V.M. Shvartsberg, A. A. Chernov, S. A. Yakimov, and V. I. Makarov. 2012. Fire suppression by low-volatile chemically active fire suppressants using aerosol technology. Fire Safety Journal 51102–109. doi:10.1016/j.firesaf.2012.04.003
  • Kuznetsov, G. V., D. V. Feoktistov, E. G. Orlova, S. Y. Misyura, V. S. Morozov, and A. G. Islamova. 2018. Evaporation modes of LiBr, CaCl2, LiCl, NaCl aqueous salt solution droplets on aluminum surface. International Journal of Heat and Mass Transfer 126 (Pt A):161–68. doi:10.1016/j.ijheatmasstransfer.2018.05.040.
  • Kuznetsov, G. V., M. V. Piskunov, R. S. Volkov, and P. A. Strizhak. 2018. Unsteady temperature fields of evaporating water droplets exposed to conductive, convective and radiative heating. Applied Thermal Engineering 131:340–55. doi:10.1016/j.applthermaleng.2017.12.021.
  • Kuznetsov, G. V., S. Y. Misyura, R. S. Volkov, and V. S. Morozov. 2019. Marangoni flow and free convection during crystallization of a salt solution droplet. Colloids and Surfaces a-Physicochemical and Engineering Aspects 572:37–46. doi:10.1016/j.colsurfa.2019.03.051.
  • Lavieille, P., F. Lemoine, G. Lavergne, J. F. Virepinte, and M. Lebouche. 2000. Temperature measurements on droplets in monodisperse stream using laser-induced fluorescence. Experiments in Fluids 29 (5):429–37. doi:10.1007/s003480000109.
  • Leger, L., and J. F. Joanny. 1992. Liquid spreading. Reports on Progress in Physics 55 (4):431–86. doi:10.1088/0034-4885/55/4/001.
  • Li, H., T. Y. Yan, K. A. Fichthorn, and S. Yu. 2018. Dynamic contact angles and mechanisms of motion of water droplets moving on nanopillared superhydrophobic surfaces: a molecular dynamics simulation study. Langmuir: The ACS Journal of Surfaces and Colloids 34 (34):9917–26. doi:10.1021/acs.langmuir.8b01324.
  • Li, H. Y., X. Y. Gu, L. Y. Liu, Q. Y. Chen, S. G. Xin, and Z. Yu. 2016. Research progress of super-hydrophobic surfaces. Applied Chemical Industry 45 (12):2347–50. doi:10.16581/j.cnki.1671-3206.2016.12.001.
  • Li, J., F. F. Huang, Y. Zhou, H. D. Zhu, Z. J. He, R. Xu, and W. J. Wu. 2013. Range of validity of hypsometry for contact angles. Science Technology and Engineering 13 (16):4486–90.
  • Liang, G., S. Shen, Y. Guo, J. Zhang. 2016. Boiling from liquid drops impact on a heated wall. International Journal of Heat and Mass Transfer 100:48–57. doi:10.1016/j.ijheatmasstransfer.2016.04.061.
  • Liang, Z., Y. Yan, J. Yan, T. H. Lee, Z. Q. Yang, L. Zhang, and C. F. Lee. 2019. The study of evaporation characteristics of the desulfurization wastewater (electrolyte solution) droplet. Applied Thermal Engineering 161. doi:10.1016/j.applthermaleng.2019.114119..
  • Liu, H., Y. Ju, N. Wang., G. Xi, Y. Zhang. 2015. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference. Physical Review E 92 (3):3. doi:10.1103/PhysRevE.92.033306..
  • Liu, Q., and B. Xu. 2015. Actuating water droplets on graphene via surface wettability gradients. Langmuir 31 (33):9070–75. doi:10.1021/acs.langmuir.5b02335.
  • Liu, S. Y. 2008. Chemical factors influence analysis on SiO2 mass transfer in FGD scrubbing with limestone/gypsum. Hubei Electric Power 05:51–53. doi:10.19308/j.hep.2008.05.020.
  • Liu, Z., J. Y. Jia, W. Chai,H. Z. Fu, and S. Y. Wang. 2014. Image processing method for measurement of wetting angle. Electronics Process Technology 35 (4):194–97. doi:10.14176/j..1001-3474.2014.04.016.
  • Lovseth, S. W., I. Snustad, A. L. Brunsvold, G. Skuagen, P. E. Wahl, and K. Y. Lervag. 2015. From droplets to process: Multilevel research approach to reduce emissions from LNG processes. Energy Procedia 64: 3–12. doi:10.1016/j.egypro.2015.01.003.
  • Lu, Q. Z., and L. A. Melton. 2000. Measurement of transient temperature field within a falling droplet. Aiaa Journal 38 (1):95–101. doi:10.2514/2.927.
  • Ma, D. D., G. D. Xia, L. X. Zong, Y. T. Jia, Y. X. Tang, R. P. Zhi. 2019. Experimental investigation of flow boiling heat transfer performance in zigzag microchannel heat sink for electronic cooling devices. International Journal of Thermal Sciences 145:106003. doi:10.1016/j.ijthermalsci.2019.106003.
  • Meysam, R. B., and D. M. Carl. 2014. Convective flows in evaporating sessile droplets. Journal of Physical Chemistry B 118 (9):2414–21. doi:10.1021/jp408241f.
  • Min, Q., J. Y. Zhu, Y. Y. Duan, and X. D. Wang. 2009. The experimental system for wetting dynamics by Wilhelmy plate method. Journal of Engineering Thermophysics 30 (9):1459–62.
  • Misyura, S. Y. 2017. Contact angle and droplet heat transfer during evaporation on structured and smooth surfaces of heated wall. Applied Surface Science 414:188–96. doi:10.1016/j.apsusc.2017.03.288..
  • Misyura, S. Y. 2017a. Contact angle and droplet heat transfer during evaporation on structured and smooth surfaces of heated wall. Applied Surface Science 414: 188–196. doi:10.1016/j.apsusc.2017.03.288.
  • Misyura, S. Y. 2017b. Evaporation of a sessile water drop and a drop of aqueous salt solution. Scientific Reports 7. doi:10.1038/s41598-017-15175-1.
  • Misyura, S. Y. 2018. Heat transfer of aqueous salt solution layers. International Journal of Heat and Mass Transfer 125:610–17. doi:10.1016/j.ijheatmasstransfer.2018.03.075.
  • Misyura, S. Y., G. V. Kuznetsov, and R. S. Volkov. 2020. Droplet evaporation on a structured surface: The role of near wall vortexes in heat and mass transfer. International Journal of Heat and Mass Transfer 148. doi:10.1016/j.ijheatmasstransfer.2019.119126
  • Misyura, S. Y. 2020. Non-isothermal evaporation and heat transfer of the salt solution layer on a structured wall in the presence of corrosion. Chemical Engineering Research & Design 153:306–14. doi:10.1016/j.cherd.2019.10.039.
  • Misyura, S. Y., G. V. Kuznetsov, and R. S. Volkov. 2020. Droplet evaporation on a structured surface: The role of near wall vortexes in heat and mass transfer. International Journal of Heat and Mass Transfer 148. doi:10.1016/j.ijheatmasstransfer.2019.119126..
  • Nguyen, D., D. Honnery, and J. Soria. 2011. Measuring evaporation of micro-fuel droplets using magnified DIH and DPIV. Experiments in Fluids 50 (4):949–59. doi:10.1007/s00348-010-0962-5.
  • Olenberg, A., and E. Y. Kenig. 2020. Numerical investigation of liquid flow morphology in structured packings. Chemical Engineering Science 219. doi:10.1016/j.ces.2020.115559.
  • Picknett, R. G., and R. Bexon. 1977. The evaporation of sessile or pendant drops in still air. Journal of Colloid and Interface Science 61 (2):336–50. doi:10.1016/0021-9797(77)90396-4.
  • Pierce, E., F. J. Carmona, and A. Amirfazli. 2008. Understanding of sliding and contact angle results in tilted plate experiments. Colloids and Surfaces A: Physicochemical and Engineering Aspects 323 (1):73–82. doi:10.1016/j.colsurfa.2007.09.032.
  • Poulard, C., G. Guéna, A. M. Cazabat, A. Boudaoud, M. Ben Amar. 2005. Rescaling the dynamics of evaporating drops. Langmuir 21 (18):8226–33. doi:10.1021/la050406v.
  • Pulvirenti, B., A. Matalone, and U. Barucca. 2010. Boiling heat transfer in narrow channels with offset strip fins: Application to electronic chipsets cooling. Applied Thermal Engineering 30 (14):2138–45. doi:10.1016/j.applthermaleng.2010.05.026.
  • Qi, R., L. Lu, H. Yang, and F. Qin. 2013. Influence of plate surface temperature on the wetted area and system performance for falling film liquid desiccant regeneration system. International Journal of Heat and Mass Transfer 64:1003–13. doi:10.1016/j.ijheatmasstransfer.2013.05.046.
  • Qi, R. H., L. Lu, and Y. Jiang. 2015. Investigation on the liquid contact angle and its influence for liquid desiccant dehumidification system. International Journal of Heat and Mass Transfer 88:210–17. doi:10.1016/j.ijheatmasstransfer.2015.04.080.
  • Qin, Y., X. Li, and Y. Yin. 2018. Modeling of liquid water transport in a proton exchange membrane fuel cell gas flow channel with dynamic wettability. International Journal of Energy Research 42 (10):3315–27. doi:10.1002/er.4084.
  • Qu, G., J. J. Kwok, and Y. Diao. 2016. Flow-directed crystallization for printed electronics. Accounts of Chemical Research 49 (12):2756–64. doi:10.1021/acs.accounts.6b00445.
  • Rowan, S. M., M. I. Newton, and G. McHale. 1995. Evaporation of microdroplets and the wetting of solid surfaces. The Journal of Physical Chemistry 99 (35):13268–71. doi:10.1021/j100035a034.
  • Schmitt, M., R. Hempelmann, S. Ingebrandt, W. Munief, D. Durneata, K. Groβ, F. Heib. 2014. Statistical approach for contact angle determination on inclining surfaces: “slow-moving” analyses of non-axisymmetric drops on a flat silanized silicon wafer. International Journal of Adhesion and Adhesives 55:123–31. doi:10.1016/j.ijadhadh.2014.08.007.
  • Sefiane, K. 2010. On the formation of regular patterns from drying droplets and their potential use for bio-medical applications. Journal of Bionic Engineering 7:S82–S93. doi:10.1016/s1672-6529(09)60221-3.
  • Sempels, W., R. De Dier, H. Mizuno, J. Hofkens, J. Vermant. 2013. Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system. Nature Communications 4(1). doi: 10.1038/ncomms2746.
  • Soulié, V., S. Karpitschka, F. Lequien, P. Prené, T. Zemb, H. Moehwald, H. Riegler. 2015. The evaporation behavior of sessile droplets from aqueous saline solutions. Physical Chemistry Chemical Physics: PCCP 17 (34):22296–303. doi:10.1039/c5cp02444g.
  • Sun, H., L. H. Yu, I. Hussain, and G. Y. Ma. 2012. Effect of 2-ethylhexanol additives on contact angle of water-metal surface. CIESC Journal 63 (S2):38–41.
  • Tang, R., C. M. Wu, and Y. R. Li. 2018. Molecular dynamics simulation of the evaporation process of a sessile argon droplet. Journal of Engineering Thermophysics 39 (6):1175–80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201806001.
  • Tao, W., and L. Lin. 2019. Numerical and experimental study on internally cooled liquid desiccant dehumidification concerning film shrinkage shape and vapor condensation. International Journal of Thermal Sciences 136:316–27. doi:10.1016/j.ijthermalsci.2018.10.046.
  • Volkov, R. S., and P. A. Strizhak. 2018. Research of temperature fields and convection velocities in evaporating water droplets using planar laser-induced fluorescence and particle image velocimetry. Experimental Thermal and Fluid Science 97:392–407. doi:10.1016/j.expthermflusci.2018.05.007.
  • Volkov, R. S., P. A. Strizhak, S. Y. Misyura, S. I. Lezhnin, V. S. Morozov. 2018. The influence of key factors on the heat and mass transfer of a sessile droplet. Experimental Thermal and Fluid Science 99:59–70. doi:10.1016/j.expthermflusci.2018.07.010.
  • Wang, B. H., T. Wang, and L. Z. Xia. 2015. Contact angle hysteresis for sessile water nanodroplets using molecular dynamics simulation. Henan Chemical Industry 32 (9):14–18. doi:10.3969/j..1003-3467.2015.09.003.
  • Wang, F., C. Liang, M. Yang, X. Zhang. 2015. Effects of surface characteristics on liquid behaviors on fin surfaces during frosting and defrosting processes. Experimental Thermal and Fluid Science 61:113–20. doi:10.1016/j.expthermflusci.2014.10.022.
  • Wang, M. J., F. H. Lin, Y. L. Hung, S.-Y. Lin. 2009. Dynamic behaviors of droplet impact and spreading: water on five different substrates. Langmuir 25 (12):6772–80. doi:10.1021/la900286.
  • Wang, N., H. Y. Yan, H. Li, and J. L. Liang. 2019. Research progress in factors affecting wettability of cermet. Special Casting & Nonferrous Alloys 39 (12):1315–19. doi:10.15980/j.tzzz.2019.12.011.
  • Wang, S. X., L. Xu, W. W. Zhang, and J. J. Tong. 2019. Droplet evaporation on the wetting gradient super-hydrophobic surface with micro-structure. Journal of Engineering for Thermal Energy and Power 34 (11):103–08. doi:10.16146/j.cnki.rndlgc.2019.11.016.
  • Wang, X. H., J. J. Li, W. Yang, and J. X. Li. 2011. Measurement on contact angles based on image process. Optoelectronic Technology 31 (1):14–19. doi:10.19453/j.cnki.1005-488x.2011.01.004.
  • Xia, M., M. J. Su, J. A. Qiao, and Y. H. Zhang. 2018. Research status of molecular dynamic simulation for the application in hydrophobic surfaces. Chinese Journal of Colloid & Polymer 36 (1):43–45. doi:10.13909/j.cnki.1009-1815.2018.01.014.
  • Xing, Y. J., W. Q. Huang, L. Shen, and R. Li, J. J. Dai. 2011. Progress in superhydrophobic finishing of cotton fabrics. Journal of Textile Research 32 (5):141–47. doi:10.13475/j.fzxb.2011.05.029.
  • Xu, Z. N., F. C. Lu, A. Ding, M. Li, H. Jin, Y. Liang, H. M. Li 2010. Contact angle algorithm considering drop volume. High Voltage Engineering 36 (6):1415–22. doi:10.13336/j.1003-6520.hve.2010.06.003.
  • Yan, M., X. Yang, and Y. Lu. 2013. Wetting behavior of water droplet on solid surfaces in solvent environment: A molecular simulation study. Colloids and Surfaces a-Physicochemical and Engineering Aspects 429:142–48. doi:10.1016/j.colsurfa.2013.03.067.
  • Yan, X., and J. L. Xu. 2019. The“stick-slip” evaporation behavior of sessile droplet with solar heating on hydrophilic and hydrophobic surfaces. Chemical Industry and Engineering Progress 38 (6):2618–25. doi:10.16085/j..1000-6613.2018-1797.
  • Yang, B., L. Zhang, B. M. Zuo, Z. Q. Yang, and J. Y. Ran. 2020. Numerical simulation of evaporation characteristics for salt-containing desulfurization wastewater droplets in low temperature flue. Journal of Engineering Thermophysics 41 (4):925–32.
  • Yang, F., Y. L. Wang, and X. Y. Guo. 2019. Numerical simulation of the droplet evaporation based on the hybrid thermal lattice Boltzmann model. Energy Research and Information 35 (2):110–16. doi:10.13259/j.cnki.eri.2019.02.009.
  • Yang, S., and Y. K. Gong. 2011. An accurate method of measuring dynamic contact angles and its impact factors. Journal of Northwest University (Natural Science Edition) 41 (5):821–26. doi:10.16152/j.cnki.xdxbzr.2011.05.011.
  • Yang, Z. R., C. W. Zhong, and C. S. Zhuo. 2019. Phase-field method based on discrete unified gas-kinetic scheme for large-density-ratio two-phase flows. Physical Review. E 99:4–1. doi:10.1103/PhysRevE.99.043302.
  • Ye, X. M., X. S. Zhang, M. L. Li, CX. Li 2018. Dynamics of evaporating drop on heated surfaces with different wettabilities. Acta Physica Sinica 67 (11):156–67. doi:10.7498/aps.67.20180159.
  • Ye, Z. Q. 2016. Design of static and dynamic contact angle measuring device under high temperature and high pressure environment. Master diss, Dalian University of Technology.
  • Yu. L., and Barash 2016. Marangoni convection in an evaporating droplet: Analytical and numerical descriptions. International Journal of Heat and Mass Transfer 102445–454. doi:10.1016/j.ijheatmasstransfer.2016.06.042
  • Zhang, T., H. M. Tian, X. Y. Rong, K. Zhao, D. Guo. 2018. High precision contact angle algorithms for ultra hydrophilic film surface. Science & Technology Review 36 (8):65–70. doi:10.3981/j..1000-7857.2018.08.007.
  • Zhang, T., H. X. Tian., B. K. Zhao, and D. Guo. 2018. High precision contact angle algorithms for ultra hydrophilic film surface. Science & Technology Review 36 (8):66–71. doi:10.3981/j..1000-7857.2018.08.007.
  • Zhang, X., and Y. Qin. 2019. Contact angle hysteresis of a water droplet on a hydrophobic fuel cell surface. Journal of Colloid and Interface Science 545:231–41. doi:10.1016/j.jcis.2019.03.026.
  • Zhang, Z. Y., J. Hou, L. Lu, D. D. Hou, and X. Y. Cheng. 2018. On the glass substrate production method for measuring contact angle. Collection of Electronic Glass Technology Papers in 2018,December 01.
  • Zhao, H., T. Wang, and Z. Che. 2019. Full-field flow measurement in evaporating sessile droplets based on the Scheimpflug principle. Applied Physics Letters 115:9. doi:10.1063/1.5108696.
  • Zhao, K. Y., H. M. Tian, D. Guo,Z. Wang, W. H. Chang, and K. Zhang. 2018. Automatic contact angle measurement method based on feature point detection. Journal of Electronic Measurement and Instrumentation 32 (11):147–53. doi:10.13382/j.jemi.2018.11.020.
  • Zhou, Q., N. Erkan, and K. Okamoto. 2017. Ex situ calibration technique for simultaneous velocity and temperature measurements inside water droplets using temperature-sensitive particles. Measurement Science and Technology 28(7). doi:10.1088/1361-6501/aa7403.
  • Zhu, J. L., and W. Y. Shi. 2018. Marangoni instability phenomena in evaporating sessile droplet at constant contact angle mode. CIESC Journal 69 (S1):53–57. doi:10.11949/j..0438-1157.20180731.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.