442
Views
24
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigation of 3D rhombus designed PEMFC on the cell performance

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 425-442 | Received 19 Jul 2020, Accepted 04 Dec 2020, Published online: 27 Jan 2021

References

  • Abdel-Rehim, A. A. 2019. The influence of electromagnetic field on the performance and operation of a PEM fuel cell stack subjected to a relatively low electromagnetic field intensity. Energy Conversion and Management 198:111906. doi:10.1016/j.enconman.2019.111906.
  • Ahmadi, N., S. Rezazadeh, A. Dadvand, and I. Mirzaee. 2017. Modelling of gas transport in proton exchange membrane fuel cells. Proceedings of the Institution of Civil Engineers - Energy 170 (4):163–79. doi:10.1680/jener.15.00015.
  • Ahmadi, N., S. Rezazadeh, M. Yekani, A. Fakouri, and I. Mirzaee. 2013. Numerical investigation of the effect of inlet gases humidity on polymer exchange membrane fuel cell (pemfc) performance. Transactions of the Canadian Society for Mechanical Engineering 37 (1):1–20. doi:10.1139/tcsme-2013-0001.
  • Ahmadi, N., and S. Rostami. 2019. Enhancing the performance of polymer electrolyte membrane fuel cell by optimizing the operating parameter. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41 (5):220. doi:10.1007/s40430-019-1720-0.
  • Ahmadi, N., V. Ahmadpour, and S. Rezazadeh. 2015. Numerical investigation of species distribution and the anode transfer coefficient effect on the proton exchange membrane fuel cell (PEMFC) performance. Heat Transfer Research 46 (10):881–901. doi:10.1615/HeatTransRes.2015-007251.
  • Amadane, Y., H. Mounir, A. E. Marjani, and E. M. Karim. 2018. Numerical investigation of hydrogen consumption in proton exchange membrane fuel cell by using computational fluid dynamics (CFD) simulation. Mediterranean Journal of Chemistry 7 (6):396–415. doi:10.13171/mjc7618121415ya.
  • Arif, M., S. C. P. Cheung, and J. Andrews. 2020. A systematic approach for matching simulated and experimental polarization curves for a PEM fuel cell. International Journal of Hydrogen Energy 45 (3):2206–23. doi:10.1016/j.ijhydene.2019.11.057.
  • Atyabi, S. A., E. Afshari, S. Wongwises, W.-M. Yan, A. Hadjadj, and M. S. Shadloo. 2019. Effects of assembly pressure on PEM fuel cell performance by taking into accounts electrical and thermal contact resistances. Energy 179:490–501. doi:10.1016/j.energy.2019.05.031.
  • Babu, A., R. Vijay, P. M. Kumar, and G. Srinivasa Rao. 2020. A novel diagnostic technique to detect the failure mode operating states of an air-breathing fuel cell used in fuel cell vehicles. International Journal of Electric, and Hybrid Vehicles. 12 (1):32–43. doi:10.1504/IJEHV.2020.104263.
  • Babu, A. R., P. M. Kumar, and G. S. Rao. 2016. Effect of design and operating parameters on the performance of planar and ducted cathode structures of an air-breathing PEM fuel cell. Arabian Journal for Science Raoo. 41 (9):3415–3423. doi:10.1007/s13369-015-1890-8.
  • Babu, A. R. V., P. Manoj Kumar, and G. Srinivasa. 2018. Parametric study of the proton exchange membrane fuel cell for investigation of enhanced performance used in fuel cell vehicles. International Journal of Electric and Hybrid Vehicles. 57 (4):3953–58. doi:10.1016/j.aej.2018.03.010.
  • Bird, R. B., W. E. Stewart, and E. N. Lightfoot. 1960. Transport phenomena john wiley & sons.New York 413.
  • Carcadea, E., M. Varlam, M. Ismail, D. B. Ingham, A. Marinoiu, M. Raceanu, C. Jianu, L. Patularu, and D. Ion-Ebrasu. 2019. PEM fuel cell performance improvement through numerical optimization of the parameters of the porous layers. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2019.08.219.
  • Chen, R., Y. Qin, M. Suhui, and D. Qing. 2019. Numerical simulation of liquid water emerging and transport in the flow channel of PEMFC using the volume of fluid method. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2019.07.169.
  • Chippar, P., and H. Ju. 2013. Numerical modeling and investigation of gas crossover effects in high temperature proton exchange membrane (PEM) fuel cells. International Journal of Hydrogen Energy 38 (18):7704–14. doi:10.1016/j.ijhydene.2012.07.123.
  • Edwards, P. P., V. L. Kuznetsov, W. I. F. David, and N. P. Brandon. 2008. Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy 36 (12):4356–62. doi:10.1016/j.enpol.2008.09.036.
  • Ehsani, M., Y. Gao, S. Longo, and K. Ebrahimi. 2018. Modern electric, hybrid electric, and fuel cell vehicles. CRC press. doi:10.1201/9780429504884.
  • Gottesfeld, S. 2007. Fuel cell techno-personal milestones 1984–2006. Journal of Power Sources 171 (1):37–45. doi:10.1016/j.jpowsour.2006.11.081.
  • Houreh, N. B., M. Ghaedamini, H. Shokouhmand, E. Afshari, and A. H. Ahmaditaba. 2020. Experimental study on performance of membrane humidifiers with different configurations and operating conditions for PEM fuel cells. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2019.12.017.
  • Lee, S. J., S. Mukerjee, J. McBreen, Y. W. Rho, Y. T. Kho, and T. H. Lee. 1998. Effects of Nafion impregnation on performances of PEMFC electrodes. Electrochimica acta 43 (24):3693–701. doi:10.1016/S0013-4686(98)00127-3.
  • Liu, S., and T. Chen; Yi Xie. 2020.. A two-dimensional analytical model of PEMFC with dead-ended anode. International Journal of Green Energy 17 (4):255–73. doi:10.1080/15435075.2020.1722133.
  • Nanadegani, F. S., E. N. Lay, and B. Sunden. 2019. Computational analysis of the impact of a micro porous layer (MPL) on the characteristics of a high temperature PEMFC. Electrochimica acta 135552. doi:10.1016/j.electacta.2019.135552.
  • Pan, M., X. Meng, L. Chao, and J. Liao; Chengjie  Pan. 2020. Impact of nonuniform reactant flow rate on the performance of proton exchange membrane fuel cell stacks. International Journal of Green Energy 1–14. doi: 10.1080/15435075.2020.1761812.
  • RavindranathTagore, Y., K. Anuradha, A. R. Vijay Babu, and P Manoj Kumar. 2019. Modelling, simulation and control of a fuel cell-powered laptop computer voltage regulator module. International Journal of Hydrogen Energy 44 (21):11012–19. doi:10.1016/j.ijhydene.2019.02.141.
  • Samanipour, H., N. Ahmadi, I. Mirzaee, and M. Abbasalizade. 2019. The study of cylindrical polymer fuel cell’s performance and the investigation of gradual geometry changes’ effect on its performance. Periodica Polytechnica Chemical Engineering 63 (3):513–26. doi:10.3311/PPch.12793.
  • Shojaeefard, M. H., G. R. Molaeimanesh, M. Nazemian, and M. R. Moqaddari. 2016. A review on microstructure reconstruction of PEM fuel cells porous electrodes for pore scale simulation. International Journal of Hydrogen Energy 41 (44):20276–93. doi:10.1016/j.ijhydene.2016.08.179.
  • Suseendiran, S. R., S. Pearn-Rowe, and R. Rengaswamy. 2019. Development of cylindrical PEM fuel cells with semi-cylindrical cathode current collectors. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2019.09.113.
  • Sutharssan, T., D. Montalvao, Y. K. Chen, W.-C. Wang, C. Pisac, and H. Elemara. 2017. A review on prognostics and health monitoring of proton exchange membrane fuel cell. Renewable and Sustainable Energy Reviews 75:440–50. doi:10.1016/j.rser.2016.11.009.
  • Wang, B., R. Lin, D. Liu, J. Xu, and B. Feng. 2019a. Investigation of the effect of humidity at both electrode on the performance of PEMFC using orthogonal test method. International Journal of Hydrogen Energy 44 (26):13737–43. doi:10.1016/j.ijhydene.2019.03.139.
  • Wang, L. 2003. A parametric study of PEM fuel cell performances. International Journal of Hydrogen Energy 28 (11):1263–72. doi:10.1016/S0360-3199(02)00284-7.
  • Wang, Y., D. F. R. Diaz, K. S. Chen, Z. Wang, and X. C. Adroher. 2019. Materials, technological status, and fundamentals of PEM fuel cells–a review. Materials Today 32 (2020): 178–203. doi:10.1016/j.mattod.2019.06.005
  • Wang, Y., R. D. Daniela Fernanda, K. S. Chen, Z. Wang, and X. C. Adroher. 2019c. Materials, technological status, and fundamentals of PEM fuel cells–a review. Materials Today. doi:10.1016/j.mattod.2019.06.005.
  • Wang, Y., S. Wang, S. Liu, H. Li, and K. Zhu. 2019b. Three-dimensional simulation of a PEM fuel cell with experimentally measured through-plane gas effective diffusivity considering Knudsen diffusion and the liquid water effect in porous electrodes. Electrochimica acta 318:770–82. doi:10.1016/j.electacta.2019.06.120.
  • Xing, L., W. Shi, H. Su, Q. Xu, P. K. Das, B. Mao, and K. Scott. 2019. Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization. Energy 177:445–64. doi:10.1016/j.energy.2019.04.084.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.