401
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Hybrid renewable system based on solar wind and fuel cell energies coupled with diesel engines for Tunisian climate: TRNSYS simulation and economic assessment

ORCID Icon
Pages 402-423 | Received 13 Aug 2020, Accepted 05 Dec 2020, Published online: 16 Jan 2021

References

  • Abdin, Z., and W. Mérida. 2019. Hybrid energy systems for off-grid power supply and hydrogen production based on renewable energy: A techno-economic analysis. Energy Conversion and Management 19615:1068–79. doi:10.1016/j.enconman.2019.06.068.
  • Anoune, K., A. Laknizi, M. Bouya, A. Astito, and A. Ben Abdellah. 2018. Sizing a PV-Wind based hybrid system using deterministic approach. Energy Conversion and Management 169:137–48. doi:10.1016/j.enconman.2018.05.034.
  • Attemene, N. S., K. S. Agbli, S. Fofana, and D. Hissel. 2020. Optimal sizing of a wind, fuel cell, electrolyzer, battery and supercapacitor system for off-grid applications. International Journal of Hydrogen Energy 45:5512–25. doi:10.1016/j.ijhydene.2019.05.212.
  • Awan, A. B., M. Zubair, G. A. S. Sidhu, A. R. Bhatti, and A. G. Abo-Khalil. 2019. Performance analysis of va ious hybrid renewable energy systems using battery, hydrogen, and pumped hydro-based storage units. International Journal of Energy Research 43:6296–321. doi:10.1002/er.4343.
  • Aziz, A. S., M. F. N. Tajuddin, M. R. Adzman, M. A. M. Ramli, and S. Mekhilef. 2019. Energy Management and Optimization of a PV/Diesel/Battery Hybrid Energy System Using a Combined Dispatch Strategy. Sustainability 11:683. doi:10.3390/su11030683.
  • Aziz, M. S., U. Saleem, E. Ali, and K. Siddiq. 2015. A review on bi-source, off-grid hybrid power generation systems based on alternative energy sources. Journal of Renewable and Sustainable Energy 7:043142. doi:10.1063/1.4929703.
  • Beckman, W. A., L. Broman, A. Fiksel, S. A. Klein, E. Lindberg, M. Schuler, and J. Thornton. 1994. TRNSYS The most complete solar energy system modeling and simulation software. Renewable Energy 5:486–88. doi:10.1016/0960-1481(94)90420-0.
  • Ben Amar, F., M. Elamouri, and R. Dhifaoui. 2008. Energy assessment of the first wind farm section of Sidi Daoud, Tunisia. Renewable Energy 33:2311–21. doi:10.1016/j.renene.2007.12.019.
  • Bennasr, A., and É. Verdeil 2012. La corporatisation de la STEG. Accessed April 10, 2014. https://halshs.archives-ouvertes.fr/halshs-00976733/file/STEG-rapportfinal-BennasrVerdeil.pdf.
  • Bezmalinovic, D., F. Barbir, and I. Tolj. 2013. Techno-economic analysis of PEM fuel cells role in photovoltaic-based systems for the remote base stations. International Journal of Hydrogen Energy 38:417–25. doi:10.1016/j.energy.2018.05.006.
  • Braga, B. L., J. L. Silveira, M. E. Da Silva, E. B. Machin, D. T. Pedroso, and C. E. Tuna. 2014. Comparative analysis between a PEM fuel cell and an internal combustion engine driving an electricity generator: Technical, economical and ecological aspects. Applied Thermal Engineering 63:354–61. doi:10.1016/j.applthermaleng.2013.10.053.
  • Buonomano, A., F. Calise, M. D. d’Accadia, and M. Vicidomini. 2018. A hybrid renewable system based on wind and solar energy coupled with an electrical storage: Dynamic simulation and economic assessment. Energy 155:174–89. doi:10.1016/j.energy.2018.05.006.
  • Chapman, A., K. Itaoka, K. Hirose, F. T. Davidson, K. Nagasawa, A. C. Lloyd, M. E. Webber, Z. Kurban, S. Managi, T. Tamaki, et al. 2019. A review of four case studies assessing the potential for hydrogen penetration of the future energy system. International Journal of Hydrogen Energy 44:6371–82. doi:10.1016/j.ijhydene.2019.01.168.
  • Chargui, R., H. Sammouda, and A. Farhat. 2012. Geothermal heat pump in heating mode: Modeling and simulation on TRNSYS. International Journal of Refrigeration 35:1824–32. doi:10.1016/j.ijrefrig.2012.06.002.
  • Cormos, A.-M., and -C.-C. Cormos. 2017. Techno-economic and environmental performances of glycerol reforming for hydrogen and power production with low carbon dioxide emissions. International Journal of Hydrogen Energy 42:7798–810. doi:10.1016/j.ijhydene.2016.11.172.
  • Curtin, J., C. McInerney, B. Ó. Gallachóir, C. Hickey, and P. Deane. 2019. Quantifying stranding risk for fossil fuel assets and implications for renewable energy investment: A review of the literature. Renewable and Sustainable Energy Reviews 116:109402. doi:10.1016/j.rser.2019.109402.
  • Duffie, J. A., and W. A. Beckman. 1991. Solar Engineering of Thermal Processes. 2nd ed ed. New York: Wiley Interscience.
  • Duman, A. C., and Ö. Güler. 2018. Techno-economic analysis of off-grid PV/Wind/Fuel cell hybrid system combinations with a comparison of regularly and seasonally occupied Households. Sustainable Cities and Society 42:107–26. doi:10.1016/j.scs.2018.06.029.
  • Elamouri, M., and F. Ben Amar. 2008. Wind energy potential in Tunisia. Renewable Energy 33:758–68. doi:10.1016/j.renene.2007.04.005.
  • Elkadeem, M. R., S. Wang, A. M. Azmy, E. G. Atiya, Z. Ullah, and S. W. Sharshir. 2020. A systematic decision-making approach for planning and assessment of hybrid renewable energy-based microgrid with techno-economic optimization: A case study on an urban community in Egypt. Sustainable Cities and Society 54:102013. doi:10.1016/j.scs.2019.102013.
  • Gharibi, M., and A. Askarzadeh. 2019. Size and power exchange optimization of a grid-connected diesel generator-photovoltaic-fuel cell hybrid energy system considering reliability, cost and renewability. International Journal of Hydrogen Energy 44:25428–41. doi:10.1016/j.ijhydene.2019.08.007.
  • Ghenai, C., T. Salameh, and A. Merabet. 2020. Technico-economic analysis of off grid solar PV/Fuel cell energy system for residential community in desert region. International Journal of Hydrogen Energy 45:11460–70. doi:10.1016/j.ijhydene.2018.05.110.
  • Halabi, L. M., and S. Mekhilef. 2018. Flexible hybrid renewable energy system design for a typical remote village located in tropical climate. Journal of Cleaner Production 177:908–24. doi:10.1016/j.jclepro.2017.12.248.
  • IRENA. 2016. The power to change: solar and wind cost reduction potential to 2025. Accessed April 15, 2018. http://www.irena.org/-/media/Files/IRENA/Agency/Publication/2016/IRENA_Power_to_Change_2016.pdf
  • Jacobson, M. Z., and V. Jadhav. 2018. World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels. Solar Energy 169:55–66. doi:10.1016/j.solener.2018.04.030.
  • Johannsen, R. M., P. A. Østergaard, and R. Hanlin. 2020. Hybrid photovoltaic and wind mini-grids in Kenya: Techno-economic assessment and barriers to diffusion. Energy for Sustainable Development 54:111–26. doi:10.1016/j.esd.2019.11.002.
  • Koepll, G. W. 1982. Putnam’s power from the wind. Second ed. New-York: Van Nostrand Reinhold Company.
  • Leonard, M. D., E. E. Michaelides, and D. N. Michaelides. 2020. Energy storage needs for the substitution of fossil fuel power plants with renewables. Renewable Energy 145:951–62. doi:10.1016/j.renene.2019.06.066.
  • Liao, G., L. Liu, E. Jiaqiang, F. Zhang, J. Chen, Y. Deng, and H. Zhu. 2019. Effects of technical progress on performance and application of supercritical carbon dioxide power cycle: A review. Energy Conversion and Management 1991:111986. doi:10.1016/j.enconman.2019.111986.
  • Lokar, J., and P. Virtic. 2020. The potential for integration of hydrogen for complete energy self-sufficiency in residential buildings with photovoltaic and battery storage systems. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2020.04.170.
  • Mert, B. D., F. Ekinci, and T. Demirdelen. 2019. Demirdelen. Effect of partial shading conditions on off-grid solar PV/Hydrogen production in high solar energy index regions. International Journal of Hydrogen Energy 44:27713–25. doi:10.1016/j.ijhydene.2019.09.011.
  • Owusu, P. A., and S. Asumadu-Sarkodie. 2016. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering 3:1167990. doi:10.1080/23311916.2016.1167990.
  • Saheli, M. A., K. Lari, and S. B. K. Ziarati. 2019. Techno-economic feasibility of a standalone hybrid energy system for semi equatorial climates: A case study. International Journal of Green Energy 16:1131–43. doi:10.1080/15435075.2019.1653880.
  • Saleem, M. S., N. Abas, A. R. Kalair, S. Rauf, A. Haider, M. S. Tahir, and M. Sagir. 2020. Design and optimization of hybrid solar-hydrogen generation system using TRNSYS. International Journal of Hydrogen Energy 45:15814–30. doi:10.1016/j.ijhydene.2019.05.188.
  • Sorgulu, F., and I. Dincer. 2018. A renewable source based hydrogen energy system for residential applications. International Journal of Hydrogen Energy 43:5842–51. doi:10.1016/j.ijhydene.2017.10.101.
  • Trabelsi, S. E., R. Chargui, L. Qoaider, A. Liqreina, and A. Guizani. 2016. Techno-economic performance of concentrating solar power plants under the climatic conditions of the southern region of Tunisia. Energy Conversion and Management 119:203–14. doi:10.1016/j.enconman.2016.04.033.
  • Ulleberg, I. 1998. Stand-alone power systems for the future: Optimal design, operation and control of solar-hydrogen energy systems. Ph.D. thesis, Norwegian University of Science and Technology, Trondheim.
  • Ulleberg, Ø., and R. Hancke. 2020. Techno-economic calculations of small-scale hydrogen supply systems for zero emission transport in Norway. International Journal of Hydrogen Energy 45:1201–11. doi:10.1016/j.ijhydene.2019.05.170.
  • Ulleberg, Ø., and S. O. Mørner. 1997. TRNSYS simulation models for solar-hydrogen systems. Solar Energy 59:271–79. doi:10.1016/S0038-092X(97)00015-7.
  • White, F. 1994. Fluid mechanics. Third ed. New-York, USA: Mc Graw Hill.
  • Yamashita, D., K. Tsuno, K. Koike, K. Fujii, S. Wada, and M. Sugiyama. 2019. Distributed control of a user-on-demand renewable-energy power-source system using battery and hydrogen hybrid energy-storage devices. International Journal of Hydrogen Energy 44:27542–2755. doi:10.1016/j.ijhydene.2019.08.234.
  • Yue, M., S. Jemei, R. Gouriveau, and N. Zerhouni. 2019. Review on health-conscious energy management strategies for fuel cell hybrid electric vehicles: Degradation models and strategies. International Journal of Hydrogen Energy 44:6844–61. doi:10.1016/j.ijhydene.2019.01.190.
  • Zhang, X., D. Wang, T. Yu, Z. Xu, and Z. Fan. 2018. Ensemble learning for optimal active power control of distributed energy resources and thermostatically controlled loads in an islanded microgrid. International Journal of Hydrogen Energy 43:22474–86. doi:10.1016/j.ijhydene.2018.10.062.
  • Zhao, L., W. Wang, L. Zhu, Y. Liu, and A. Dubios. 2018. Economic analysis of solar energy development in North Africa. Global Energy Interconnection 1:53–62. doi:10.14171/j.2096-5117.gei.2018.01.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.