360
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Investigation of metal foam porosity and wettability on fuel cell water management by Electrochemical Impedance Spectroscopy

, , , , &
Pages 708-719 | Received 05 Aug 2020, Accepted 08 Jan 2021, Published online: 31 Mar 2021

References

  • Akroot, A., Ö. Ekici, and M. Köksal. 2019. Process modeling of an automotive pem fuel cell system. International Journal of Green Energy 16 (10):778–88. doi:10.1080/15435075.2019.1641105.
  • Alaefour, I., S. Shahgaldi, A. Ozden, X. Li, and F. Hamdullahpur. 2018. The role of flow-field layout on the conditioning of a proton exchange membrane fuel cell. Fuel 230:98–103. doi:10.1016/j.fuel.2018.05.062.
  • Ashrafi, M., H. Kanani, and M. Shams. 2018. Numerical and experimental study of two-phase flow uniformity in channels of parallel PEM fuel cells with modified Z-type flow-fields. Energy 147:317–28. doi:10.1016/j.energy.2018.01.064.
  • Chen, H., H. Guo, F. Ye, and C. F. Ma. 2020. An experimental study of cell performance and pressure drop of proton exchange membrane fuel cells with baffled flow channels. Journal of Power Sources 472:228456. doi:10.1016/j.jpowsour.2020.228456.
  • Espinoza, M., M. Andersson, J. Yuan, and B. Sundén. 2015. Compress effects on porosity, gas‐phase tortuosity, and gas permeability in a simulated PEM gas diffusion layer. International Journal of Energy Research 39 (11):1528–36. doi:10.1002/er.3348.
  • Ghanbarian, A., M. J. Kermani, J. Scholta, and M. Abdollahzadeh. 2018. Polymer electrolyte membrane fuel cell flow field design criteria–application to parallel serpentine flow patterns. Energy Conversion and Management 166:281–96. doi:10.1016/j.enconman.2018.04.018.
  • Huo, S., N. J. Cooper, T. L. Smith, J. W. Park, and K. Jiao. 2017. Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor. Applied Energy 203:101–14. doi:10.1016/j.apenergy.2017.06.028.
  • Ismail, M. S., K. J. Hughes, D. B. Ingham, L. Ma, and M. Pourkashanian. 2013. Effect of PTFE loading of gas diffusion layers on the performance of proton exchange membrane fuel cells running at high‐efficiency operating conditions. International Journal of Energy Research 37 (13):1592–99. doi:10.1002/er.2968.
  • Kakaee, A. H., G. R. Molaeimanesh, and M. E. Garmaroudi. 2018. Impact of PTFE distribution across the GDL on the water droplet removal from a PEM fuel cell electrode containing binder. International Journal of Hydrogen Energy 43 (32):15481–91. doi:10.1016/j.ijhydene.2018.06.111.
  • Khan, S. S., H. Shareef, and A. H. Mutlag. 2019. Dynamic temperature model for proton exchange membrane fuel cell using online variations in load current and ambient temperature. International Journal of Green Energy 16 (5):361–70. doi:10.1080/15435075.2018.1564141..
  • Kumar, A., and R. G. Reddy. 2003. Modeling of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates. Journal of Power Sources 114 (1):54–62. doi:10.1016/S0378-7753(02)00540-2.
  • Lee, Y. H., S. M. Li, C. J. Tseng, C. Y. Su, S. C. Lin, and J. W. Jhuang. 2017. Graphene as corrosion protection for metal foam flow distributor in proton exchange membrane fuel cells. International Journal of Hydrogen Energy 42 (34):22201–07. doi:10.1016/j.ijhydene.2017.03.233.
  • Li, X., and I. Sabir. 2005. Review of bipolar plates in PEM fuel cells: flow-field designs. International Journal of Hydrogen Energy 30 (4):359–71. doi:10.1016/j.ijhydene.2004.09.019.
  • Lim, B. H., E. H. Majlan, W. R. W. Daud, M. I. Rosli, and T. Husaini. 2017. Numerical analysis of modified parallel flow field designs for fuel cells. International Journal of Hydrogen Energy 42 (14):9210–18. doi:10.1016/j.ijhydene.2016.03.189.
  • Liu, H., W. Yang, J. Tan, Y. An, and L. Cheng. 2018. Numerical analysis of parallel flow fields improved by micro-distributor in proton exchange membrane fuel cells. Energy Conversion and Management 176:99–109. doi:10.1016/j.enconman.2018.09.024.
  • Liu, J., S. Shin, and S. Um. 2019. Comprehensive statistical analysis of heterogeneous transport characteristics in multifunctional porous gas diffusion layers using lattice boltzmann method for fuel cell applications. Renewable Energy 139:279–91. doi:10.1016/j.renene.2019.02.089.
  • Molaeimanesh, G. R., and M. H. Akbari. 2014. Impact of PTFE distribution on the removal of liquid water from a PEMFC electrode by lattice boltzmann method. International Journal of Hydrogen Energy 39 (16):8401–09. doi:10.1016/j.ijhydene.2014.03.089.
  • Nanadegani, F. S., E. N. Lay, and B. Sunden. 2019. Effects of an MPL on water and thermal management in a PEMFC. International Journal of Energy Research 43 (1):274–96. doi:10.1002/er.4262.
  • Pan, M., X. Meng, C. Li, J. Liao, and C. Pan. 2020. Impact of nonuniform reactant flow rate on the performance of proton exchange membrane fuel cell stacks. International Journal of Green Energy 17 (11):603–16. doi:10.1080/15435075.2020.1761812.
  • Park, J. E., J. Lim, S. Kim, I. Choi, C. Y. Ahn, W. Hwang, M. S. Lim, Y. H. Cho, and Y. E. Sung. 2018. Enhancement of mass transport in fuel cells using three-dimensional graphene foam as flow field. Electrochimica acta 265:488–96. doi:10.1016/j.electacta.2018.01.191.
  • Sakaida, S., Y. Tabe, and T. Chikahisa. 2017. Study on gas diffusion layer structure tolerant to flooding in pefc by scale model experiment and lbm simulation. ECS Transactions 80 (8):123. doi:10.1149/08008.0123ecst.
  • Shakerinejad, E., M. H. Kayhani, M. Nazari, and A. Tamayol. 2018. Increasing the performance of gas diffusion layer by insertion of small hydrophilic layer in proton-exchange membrane fuel cells. International Journal of Hydrogen Energy 43 (4):2410–28. doi:10.1016/j.ijhydene.2017.12.038.
  • Shin, D. K., J. H. Yoo, D. G. Kang, and M. S. Kim. 2018. Effect of cell size in metal foam inserted to the air channel of polymer electrolyte membrane fuel cell for high performance. Renewable Energy 115:663–75. doi:10.1016/j.renene.2017.08.085.
  • Ting, F. P., C. W. Hsieh, W. H. Weng, and J. C. Lin. 2012. Effect of operational parameters on the performance of PEMFC assembled with Au-coated Ni-foam. International Journal of Hydrogen Energy 37 (18):13696–703. doi:10.1016/j.ijhydene.2012.02.142.
  • Tong, S., J. C. Bachman, A. Santamaria, and J. W. Park. 2013. Experimental investigation on a polymer electrolyte membrane fuel cell (PEMFC) parallel flow field design with external two-valve regulation on cathode channels. Journal of Power Sources 242:195–201. doi:10.1016/j.jpowsour.2013.05.018.
  • Tsai, B. T., C. J. Tseng, Z. S. Liu, C. H. Wang, C. I. Lee, C. C. Yang, and S. K. Lo. 2012. Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor. International Journal of Hydrogen Energy 37 (17):13060–66. doi:10.1016/j.ijhydene.2012.05.008.
  • Tseng, C. J., B. T. Tsai, Z. S. Liu, T. C. Cheng, W. C. Chang, and S. K. Lo. 2012. A PEM fuel cell with metal foam as flow distributor. Energy Conversion and Management 62:14–21. doi:10.1016/j.enconman.2012.03.018.
  • Wang, B., G. Zhang, H. Wang, J. Xuan, and K. Jiao. 2020a. Multi-physics-resolved digital twin of proton exchange membrane fuel cells with a data-driven surrogate model. Energy and AI, 100004. 100004. doi:10.1016/j.egyai.2020.
  • Wang, X., B. Zhou, and M. Jiang. 2018. Dynamic contact angle effects on gas‐liquid transport phenomena in proton exchange membrane fuel cell cathode with parallel design. International Journal of Energy Research 42 (14):4439–57. doi:10.1002/er.4189.
  • Wang, Y., D. F. R. Diaz, K. S. Chen, Z. Wang, and X. C. Adroher. 2020b. Materials, technological status, and fundamentals of PEM fuel cells–a review. Materials Today 32:178–203. doi:10.1016/j.mattod.2019.06.005.
  • Wu, H. W., D. Y. Kang, and S. W. Perng. 2017. Effect of rectangular ribs in the flow channels of HTPEM fuel cell by a three-dimensional model. Energy Procedia 105:1376–81. doi:10.1016/j.egypro.2017.03.510.
  • Yuan, W., Y. Tang, X. Yang, and Z. Wan. 2012. Porous metal materials for polymer electrolyte membrane fuel cells–A review. Applied Energy 94:309–29. doi:10.1016/j.apenergy.2012.01.073.
  • Zhang, G., B. Xie, Z. Bao, Z. Niu, and K. Jiao. 2018. Multi‐phase simulation of proton exchange membrane fuel cell with 3D fine mesh flow field. International Journal of Energy Research 42 (15):4697–709. doi:10.1002/er.4215.
  • Zhang, J., H. Li, Z. Shi, and J. Zhang. 2010. Effects of hardware design and operation conditions on PEM fuel cell water flooding. International Journal of Green Energy 7 (5):461–74. doi:10.1080/15435075.2010.515185.
  • Zhang, X., S. Chen, Z. Xia, X. Zhang, and H. Liu. 2019. Performance enhancements of PEM fuel cells with narrower outlet channels in interdigitated flow field. Energy Procedia 158:1412–17. doi:10.1016/j.egypro.2019.01.343.
  • Zhu, Y., R. Lin, Z. Jiang, D. Zhong, B. Wang, W. Shangguan, and L. Han. 2019. Investigation on cold start of polymer electrolyte membrane fuel cells with different cathode serpentine flow fields. International Journal of Hydrogen Energy 44 (14):7505–17. doi:10.1016/j.ijhydene.2019.01.266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.